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1. Introduction I 
/ 
6 

The plan t o  prepare t h i s  paper evolved from a paper presented a t  the 

Pioneer 6 Symposium i n  Washington [Wolfe e t  a l . ,  19661, and a paper presented 

a t  the Inter-Union Symposium on Solar-Terrestr ia l  Physics i n  Belgrade i n  1966 

[Hundhausen e t  al., 19661. These papers reported on observations of s o l a r  wind 

plasma by the Pioneer 6 space probes and by the  s a t e l l i t e s  of the  V e l a  3 series. 

One important r e s u l t  of these experiments was the  observation t h a t  the d i s t r ibu -  

t i o n  functions of the s o l a r  wind ions,  primarily protons, are anisotropic.  

The V e l a  3 observations yielded data  f o r  T 

2.5, with a frequency maximum near 1.4. The s ignif icance of the temperature i n  

t h i s  r a t i o  w i l l  become evident immediately i f  w e  consider the d e f i n i t i o n  which 

states t h a t  the temperature i n  a c e r t a i n  d i r ec t ion  is determined by the variance 

of the v e l o c i t i e s  of a l l  the p a r t i c l e s  moving i n  t h i s  d i r ec t ion  i n  the reference 

system of mean p a r t i c l e  velocity.  The Pioneer measurements yielded even g rea t e r  

values of anisotropy. Moreover, it w a s  observed t h a t  the d i r ec t ion  of maximum 

temperature agrees with the d i r ec t ion  of the magnetic f i e l d  [Hundhausen e t  a l . ,  

19673. More recent measurements made with the a i d  of the Vela 4 s a t e l l i t e s  have 

shown t h a t  t h e  e l ec t rons ,  t oo ,  show some anisotropy, although t o  a l e s s e r  degree 

[Montgomery e t  al . ,  19681. However, according t o  personal information received 

from J. Wolfe, these r e s u l t s  indicat ing e l ec t ron  anisotropy m u s t  be considered 

I 

ranging from 1.0 t o  more than maJTmean 

L5 * 

1 
L 

with some degree of caution because of t he  experimental d i f f i c u l t i e s  involved i n  

t h e i r  acquis i t ion.  Additional information on measured parameters and s o l a r  wind 

magnitudes close t o  the  e a r t h ' s  o r b i t  t h a t  were computed from them, is presented 

i n  Tables 1 and 2. Here it appl ies  t h a t  

A 2 1/22 (PI, + PL) s -  
0 - 6 magnetic f i e l d  pressure 

where PI and PI represent t he  p a r a l l e l  and the v e r t i c a l  component of t o t a l  pres- 

sure .  Parker 's  s o l a r  wind theory was used t o  compute the curves p lo t t ed  i n  

Figure 1. The s o l i d  curves w e r e  based on a s t i pu la t ed  corona temperature of 

L6 

and a s t i p u l a t e d  polytropic index of cy = 1, t h a t  is, a 

which corresponds 

6 10 OK = T - ion - Telectron 
constant temperature. 

t o  T - no-', t h a t  is, cy = 1.1, where n is the ion  number density.  

In add i t ion ,  we f i nd  a dotted curve ŝ  0 
The o the r  

~ ~~ 

* Numbers i n  the margin ind ica t e  pagination i n  the foreign text .  
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magnitudes hardly deviate  from the  values f o r  T = cons t ,  provided t h a t  the  

dis tance of t h e  sun is not too  great.  In the  case where QJ = 1.1, the  corona 
6 

= 10 OK w i l l  r e s u l t  temperature was se lec ted  so t h a t  a value of T - 
i n  proximity of t he  ear th .  Since Parker 's  theory requi res  only the  sum of 

'electron ion ion 

Te l ec  t ron 

e l ec t ron  - 'ion 

+ T the  temperatures o f ,  f o r  instance,  T. = 500,000°K and 

= 1.5 x lo6,, i n  the v i c i n i t y  of ea r th  w i l l  correspond t o  t h i s  corona 

temperature. The curves provide a first impression of t he  mean p r o f i l e  of these 

magnitudes t h a t  must be expected. 

The s o l a r  wind plasma is the  medium i n  which the  per turbat ions propagate 

which frequent ly  produce magnetic storms on e a r t h  after s o l a r  flares. Since our 

present-day concepts state t h a t  the  propagation of these per turbat ions is 

associated with the  formation of shock waves, the  observations of plasma aniso- 

tropy which w e r e  mentioned above w i l l  immediately pose the  quest ion a s  t o  the  

type of changes i n  the well-known shock waves i n  i so t rop ic  plasma t h a t  w i l l  

r e s u l t  f r o m  anisotropy. MHD shock waves of i so t rop ic  pressure w e r e  f i r s t  t r ea t ed  

i n  theory by de Hoffmann and T e l l e r  [19501. Later, it was pr imari ly  two problem 

areas t h a t  became the  sub jec t  of invest igat ion.  The first of these involved the 

problem of t h e  behavior of t he  cha rac t e r i s t i c s  of t he  plasma and of the  magnetic 

f i e l d  behind t h e  shock wave a s  a funct ion of one shock wave i n t e n s i t y  parameter 

such as the  shock wave ve loc i ty ,  re fe r red  t o  the  nonperturbed medium, o r  as  a 

funct ion of the  change of the  magnetic f i e l d  across  the  shock wave, when the  

corresponding magnitudes i n  the a rea  in f ron t  of t he  shock wave a re  known, t h a t  is, 

in  the  nonperturbed medium. Moreover, the  problem as  t o  the  s t a b i l i t y  of the  L l O  

shock waves has been invest igated.  The second problem area includes a l l  the  

questions as  t o  the  s t r u c t u r e  of the shock wave, t h a t  is, t o  the  functions which 

describe the  s p a t i a l  dependence of t he  physical magnitudes during the  t r a n s i t i o n  

from the  area i n  f ron t  of the  shock wave t o  the  a rea  behind the  shock wave. The 

treatment of t h i s  second problem area is much more d i f f i c u l t  than t h a t  of t h e  

f irst ,  and it is f a r  from b e h g  resolved, while the  first-named problem area can 

be considered completed i n  its major aspects.  The most important papers on the  

interdependence of the plasma s t a t e s  on e i t h e r  s i d e  of t h e  shock w a v e  include 

the paper by de Hoffmann and T e l l e r  C19501, a paper by H e l f e r  Cl9531, M s t  C195.51, 

and Bazer and Ericson [1958]. The problem of the  s t a b i l i t y  of t he  shock waves 

2 
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waves has been solved by Russian authors. 

Anderson [ 19633. 
A summary is found i n  the  paper by 

TABLE 1. COMPILATION OF SOME CHARACTERISTICS OF THE INTER- 
PLANETARY FBDIUM, ACCORDING TO NESS C19671. THESE 
DATA ORIGINATED FROM OBSERVATIONS MADE I N  THE 
V I C I N I T Y  OF THE EARTH ORBIT DURING THE PERIOD FROM 

1962 THROUGH 1966. 

Velocity, km/sec 

Flux d i r ec t ion  

Minimum Maximum Mean 

280 900 400 t o  500 

+loa -1.5" 
against  the s o l a r  radius  vector (+ indi-  
cates an or iginat ing d i r e c t i o n  w e s t  of the 
sun ' s  cen te r )  

0.4 80 5 
-3 Numerical ion densi ty ,  cm 

Helium concentration i n  
percent of proton con- 
centrat ion 

0 15 4 

5 2 x 10 
6 

1 x 10 3 Proton temperature, OK 6 x 10 

Ion anisotropy T maxlTmean 1.0 25 1.4 

Magnitude of the magnetic 0.25 40 6 
f i e l d ,  y ( l y  = 10- 5 Oe) 

Magnetic f i e l d  d i r ec t ion  i n  the e c l i p t i c ,  with frequency maxima 
near 135' or  315" against  the s u n ' s  radius 
vector 

L7 

Alfvgn ve loc i ty ,  km/sec 30 150 60 

3 



TABLE 2. PLASMA DATA FOR SELECTED INTERVALS DURING 
MARCH AND APRIL, 1967, ACCORDING TO 

MONTGOMERY ET AL. C19681 

Electron temperature, OK 7 x 10 t o  2 1 0 5 0 ~  4 

Electron anisotropy, 

'mad'me an 

Ratio o f  e lec t ron  
temperature t o  mean 
proton temperature 

1.1 t o  1.2 

1.5 t o  5 

Proton anisotropy 1.0 t o  5 (!I 

Velocity, km/sec 400 

Numerical proton densi ty ,  4 
-3 c m  

4 

t o  10 

L! 



I I 

IO 0.4 

t i, 5 . 0 / -  

." 
2. 0 
1.0 , -. I I , 1 1 r , I i - - , : - I  

0.5 1.0 1.5 

Distance from sun i n  - 
astronomical u n i t s  

Figure 1. Some important s o l a r  wind parameters, 
according t o  Parker 's  theory. The s o l i d  l i n e s  
correspond t o  the polytropic index = 1, the 
dotted l i n e s  t o  Q = 1.1. 
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This paper does not propose to deal with the stability problem in con- 

Only the relationships junction with shock waves in an anisotropic plasma. 

existing between the magnitudes on either side of the shock wave shall be de- 

rived. The denotations and the classification system of possible solutions 

represent an expansion of the paper by Bazer and Ericson [1958] which includes 
a very clearly stated classification system acquired exclusively via analytic 

methods. Consequently, this paper will be structured as follows. 

The step functions for the discontinuities under consideration shall be 

derived in Chapter 2, starting out from the basic equations of kinetic plasma 

theory stated by Dupree C19631. The justification of the stipulations made for 

this purpose shall be discussed, including comparison with other authors. More- 

over, the H-theorem shall be used to introduce a generalized entropy condition, 

and some consequences shall be discussed briefly. The step functions shall be 

discussed and classified with respect to their dependence on several shock wave 

parameters in Chapter 3 .  Finally, a summary of the results shall be provided, 

discussing the possibilities for testing the theory. 

Ll1 

2. Derivation of the Shock Relationships 

2.1. Derivation of the Basic Equations 

2.1.1. Klimontovich-Dupree Formulas 

We shall start out by derivrng the basic plasma equations. After several 

intermediate steps these will yield the basis for the computation of the shock 

wave jump functions in Section 2.5. First, we stipulate that we shall use the 

electromagnetic dimensional system. Moreover, a nonrelativistic calculation 

procedure shall be used. 

Let us stipulate a completely ionized plasma consisting of M particles of 
P 

type p .  
numbered i in the hegadimensional space x, v, be described by the position 
vector x (t) and by the velocity vector v (t). In that case, we will obtain 

the following for the particle densities in the hexadimensional space 2, v, 
according to Klimontovich [19571 and Dupree C19631: 

Under certain initial conditions, let the trajectory of the particle 

lL¶i -v,i 

6 



Ml. 

where = 1, 2 ,  3 ... number of p a r t i c l e  types. Integrat ion over t he  e n t i r e  

permissible space E, vwill y i e l d  

where d z  is the volume element i n  posi t ion space, and d v  i n  ve loc i ty  space. 

Now the  densi ty  N satisfies the equation 
II 

where e and m successively,  represent the charge and the m a s s  of a p a r t i c l e  of L13 
type p. E is the e l e c t r i c a l  f i e l d  vector and 

which i n  t h i s  case is a l w a y s  equal t o  the vector-of magnetic f i e l d  s t r eng th ,  E. 
The f i e l d s  E and s a t i s f y  the  following equations: 

II - II' 
the vector  of magnetic induction - 

,., 

d iv  2 I - 
c = ve loc i ty  of l i g h t  i n  a vacuum 

This equation system describes the behavior of the s t i p u l a t e d  plasma. As 

a r u l e ,  i ts exact so lu t ion  w i l l  be extremely d i f f i c u l t .  However, i n  many cases ,  

t h i s  solut ion w i l l  not be required because the  objective i n  most cases is t o  

compute merely s ta t i s t ica l  q u a n t i t i e s  from these solutions.  Certain ensemble 

7 
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means are such quantities. An ensemble in statistical mechanics is represented 

by a large number of similar systems. Similarity in this case means that all 

systems consisting of C M particles have the same Hamiltonian. The ensemble is 

characterized at any point of time by the probability distribution of the 6c M 
position and velocity coordinates and of the electromagnetic field components 

at any point in space. This probability density is defined so that it will be 

compatible with the initial boundary conditions of the problem under consideration 

[Tolman, 1950, Chapter 1111. We shall return to this point in Sections 2.2. and 

2.4. 

P P  
L14 P 1 . I  

We shall now determine an equation system for the ensemble means < > of N - P 
and E, as well as E. Using the definitions for the fluctuations 6 N  = N - <N >, 
6E = E - <b, 6K = for the single-particle 

distribution function o f  particle type 1.1, in addition to E = < E >  and E = < E > ,  
we obtain the following by forming the ensemble mean of Eq. (2a): 

- - I . L P  F - <p, and the definitions <N > = f 
w 1.I - 

M - 
Since the Maxwellian equations are linear in N E, and 5, it is merely 4 

necessary to replace N by C N > = f and by < E >  = E, and so on, after 
forming the ensemble mean: 

1.I 1.I 1.I 

a u  
a t  rot E = - -- 

As a rule, the equation system0)will not be closed because of the term on 

the right-hand side of (3a), so that it will not be adequate to compute f , 
E and E. In fact, the equation system (3) is merely the first element in an 
infinite hierarchy of equations that are coupled to each other [Dupree, 19631. 

P 

8 



Therefore, the transition from the equation system (2) to the mentioned hierarchy 

of equations will not usually yield any advantage. However, this hierarchy will 

become valuable if it can be closed, for instance, through development by the 

smallness parameter e which is discontinued when a certain order is reached. 

Disregarding the term on the right-hand side of (3a) will lead to the Vlasov 

equation which, consequently, can be well distinguished from Eq. (2a). 

f 
1; 

We progress one step further when we derive the Balescu-Lenard equation 

where we allow only for Coulombian forces, stipulate homogeneity of the medium, 

and disregard correlations between three or more particles. Stipulating adiabatic 

conditions we will then obtain an expression for > which is a 

functional of f . The second component is small of higher order. Under certain 

prerequisites this correlation term will yield the Rosenbluth-MacDonald-Judd form 

[1957] which can also be obtained as a development of Boltzmann's shock integral. 

Henceforth, we shall use the general form of the term - $fp z < s N p  (66 + y v lH)> 
which was designated C . We shall revert to the specific forms of the correlation 
term, or with reservations, of the shock term C only in some exceptional 

a C N  - 3- < + 
CL 

a 

I.L 

I.L 
instances. 

2.1.2. Formation of Velocity Moments 

The next step shall be to determine the continuity equation, the impulse 

equation, and the energy equation from Eqs. (3a) by forming the velocity moments 

via the usual procedure. First, we shall define as follows: 

= concentration of 
particle type 

= density 

& mass 'velocity 

9 



2 
( y -  g/. Pr d_v = internal energy I per unit mass 

6 =I 
$71, 

Now, we integrate the Fq. (3a) over the velocity space, and using the 

relationship 

( E  + Y X  !4 av_ 

obtain: 

and hence, the continuity equation 

or 

Multiplication of (3a) by x m  and integration over the velocity space will 
c1 

yield 

10 



and 

This w i l l  r e s u l t  i n  the  impulse equation f o r  p a r t i c l e  type p: 

H e r e  w e  used component wr i t ing  with summation convention f o r  some of 

t he  vectors and tensors .  The f luc tua t ions  6 n 6U etc.  are obtained through 

replacement of f by 6N i n  t he  de f in i t i on  equation system 4. The vector  v P 
F represents  a generalized f r i c t i o n  force.  
-P 

@ '  7 

Fina l ly ,  w e  must determine the  energy equation. For t h i s  purpose w e  

and in t eg ra t e  over the  ve loc i ty  space: 
m 2 

2 
multiply b y A  

11 



We obtain the following : 
a 

Eqs. 5, 6 ,  7, and 3b are used in the next section where they serve as the 

basis for the derivation of the conservation equations for the shock wave 

trans it ion. 

2.2. Derivation of the Conservation Equations P o  

2.2.1. Introduction 

The conservation equations for the shock wave transition shall be derived in 

this sub-section. Although this paper is concerned primarily with shock waves, 

we shall use these conservation equations for completeness in order to acquire 

statements on contact discontinuities and rotational discontinuities as well. 

A precise definition of these concepts shall be given later on. First we must 

clarify some problems with respect to the shock wave model under consideration. 

Shock waves, rotational discontinuities, and contact discontinuities arising 

in problems of gas dynamics, magnetohydrodynamics, and plasma dynamics represent 

areas of extremely great spatial gradients. Let L be the thickness of one 

shock wave transition and L the characteristic length for the remainder of the 

space: 

with the further condition that the curvature of the shock front be < 1/L 
we derive from this circumstance the justification for treating the investigation 

of the.structure and of other characteristics of shock waves as a one-dimensional 

problemwhere only a segment is taken into consideration. Consequently, we allow 

only for the spatial variations located perpendicularly to the shock front. 

S 

in that case, it will apply frequently that Ls < L. In conjunction 

S' 

12 



Moreover, we assme the existence of a reference system B and, at rest within 

it, coordinate system K within which the shock wave is stationary. In the CO- 

ordinate system K so defined the shock wave represents the area where the transi- 

tion takes place from the medium on the one side of the shock front to the 

medium on the other side of the shock front. Beyond this area all the gra- 

dients will disappear in this model. 

if 
S 

S 

The one-dimensional configuration described above can be realized exactly 

in the classical case of shock waves in gas dynamics, but also in the case of 

magnetohydrodynamic shock waves where particle collisions are the predominant 

effect. We simply consider the uniform motion into the homogeneous propagation 

medium of a suitable selected, infinitely extended piston. In that case there L21 

will be thermodynamic equilibrium on both sides at an adequate distance from 

the shock front, and all three gradients will disappear. 

However, in our case we are.dealing with shock waves that propagate in a 

generally anisotropic plasma. Such a plasma will not be in thermodynamic equi- 

librium, and it will not be possible to satisfy the stipulation & =  a =  2- -0 
a n d a = o  at some distance from the shock front. Shocks and plasma instabili- 

ties will tend to establish isotropy of the plasma. Anisotropy-producing 

phenomena can counteract these processes. 

3 y  a2- 

at 

Let us consider the solar wind as an example. We have a plasma that is 

outflowing from the sun, expanding in the process, where the mass velocity varies 

only little from a point of about 0.2 to 0.4 astronomical units (cf. Figure 1). 
According to Parker’s model of the interplanetary magnetic field [Parker, 19631, 

the strength of the magnetic field initially decreases at a rate of 1/r , 
and at the rate of l/r at greater distance from the sun. If there were no 
collisions and instabilities the temperature in the direction parallel to the 

magnetic field would remain constant and the temperature perpendicular to the 

magnetic field would decrease in proportion to 121 with increasing distance from 
the sun, in accordance with the conservation of the first adiabatic invariant 

[Parker, 19631. In reality, however, this process is opposed by collisions and 

instabilities which limit the anisotropy. Here the inhomogeneity of the medium 

is required to generate and maintain the anisotropy. This inhomogeneity of the 

medium can be expressed by a characteristic length L a  1 astronomical unit of 

2 



the  s o l a r  wind, which is much g rea t e r  than the  length scale Ls of a shock wave 

which s h a l l  be discussed later on. Although t h i s  inhomogeneity is important 

as such, w e  can disregard it provided t h a t  w e  a l s o  disregard the anisotropy- 

destroying processes i n  the non-perturbed s o l a r  wind as being of a higher order. 

More exact ly  speaking, Scarf e t  al. [19671 s t a t e d  t h a t  these are in s t ab le ,  low- 

frequency "whistlerft  waves whose amplitude w i l l  not involve any s i g n i f i c a n t  

per turbat ion of the physical magnitudes of s o l a r  wind. 

/ 22 

W e  deduce from t h i s  b r i e f  discussion t h a t  shock waves i n  an anisotropic  

plasma i n  general are col ls ion-free shock waves, t h a t  is shock waves where 

simple Coulombian two-body c o l l i s i o n s  play a subordinate role .  For these 

Y R e a r  of shock 
w a v e  with 

P1,EJ 5Bl .  

n- 
- L s -  

Front of shock 
wave with 

- X  n \ 
V" 5 0 

d c k  wave area\ 

Figure 2. Sketch t o  o r i e n t  the coordinate system K g  
within the reference system Bo and t o  es- 
t a b l i s h  some frequently used denotations. 

a types of shock waves the assumption of a coordinate system K with zt = 0 f o r  

every point w i l l  be .Coo r e s t r i c t i v e ,  s ince  non-steady s t a t e  processes play an 

important r o l e  i n  considerations with respect  t o  s t r u c t u r e  of these phenomena. 

We s h a l l  discuss t h i s  problem i n  some more d e t a i l  l a t e r  on. Kere w e  s h a l l  make 

the much less r e s t r i c t i v e  assumption t h a t  a reference system e x i s t s ,  

S 

L23 
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I 

with a coordinate system K a t  rest within i t ,  as shown i n  Figure 2,  where it 

appl ies  outside an adequately wide in t e rva l  t h a t  

and 

equation, The s t a t i s t i c a l  c h a r a c t e r i s t i c s  of t he  turbulence which must be ex- 

pected within (0, Ls) should not be dependent on y ,  z ,  and t. Up t o  t h i s  point 

we have not made a statement as t o  the s t a t i s t i c a l  ensemble over which the mean 

is taken. This question is important with respect t o  a comparison with observa- 

t ions.  W e  can use the statements j u s t  made i n  order t o  define an ensemble E .  

Any r e a l i z a t i o n  of our problem, expressed by the functions N 

as well as E(&, t ) ,  s h a l l  belong t o  the ensemble 8 ,  provided t h a t  it s a t i s f i e s  

the following conditions. 

0 
( 0 ,  Ls> a = 3 = 9 = 0 ax ay 3 2  

&= 0 and where, moreover, w e  can assume the v a l i d i t y  of Vlasov's 

(E, v, t )  and E(&, t ) ,  14 

L e t  a f i c t i t i o u s  plasma analyzer located i n  the  half-space x >  L t h a t  is 
SI 

on the f r o n t  s i d e  of the shock wave, measure the s a m e  p a r t i c l e  f l u x  energy 

spectrum within a c e r t a i n  boundary about the spectrum resu l t i ng  from the given 

f f o r  any p a r t i c l e  type,  f o r  any o r i en ta t ion  of the normal of the i n l e t  aperture 

located a t  any po in t ,  and f o r  any i n i t i a l  point of time of the measuring cycle. 

Let the width of the boundary about the value i n  question decrease with imreas ing  

measuring time t ,  i n  accordance with the increasing s ta t is t ical  accuracy. In 

o the r  words, as  t h e  measuring time increases ,  the measured d i s t r i b u t i o n  functions 

should be grouped ever more c lose ly  about the given d i s t r i b u t i o n  function 

which i n  the case of x >  L is not dependent on x ,  y, z, and t. Moreover, it is 

advantageous t o  suppose t h a t  t he  number of energy levels  of the f i c t i t i o u s  plasma 

analyzer increases with increasing measuring time t s o  t h a t  the accuracy of the 

mean of the measured d i s t r i b u t i o n  function increases with increasing t .  I n  addi t ion,  

l e t  the mean magnetic f i e l d  vector which is measured by a f i c t i t i o u s  magneto- 

meter a t  any locat ion where x >  L and f o r  any posi t ion of the time in t e rva l  

( t ,  t + x) converge on the  given v e c t o r s a s  t increases. 

c1' 

- 
- 

L24 
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Second, homogeneity and steady s ta te  s h a l l  e x i s t  i n  the s a m e  sense behind 

the shock wave where x < 0 (cf.  Figure 2 ) .  However, here the d i s t r i b u t i o n  

functions f and H s h a l l  not be prescribed. I.L -1 

Third, l e t  the f luc tua t ions  of the ensemble E outside of (0, L ) be so small 
S 

t h a t  they cannot cause changes of f whose length is greater than 2 L and 
II 



their contributions to pressure, energy flux and energy density are so small 

that they can be disregarded. All of these conditions should apply only to terms 

up to order L /L. 

fies the conditions explained above will be part of e ,  we can see immediately 
that the ensemble means of ensemble E cannot be dependent on y, z ,  and t. 

realization which is part of E can be used to construct a new permissible 

realization by means of random displacement in the y and z direction or along 

the time axis. 

Since realization of the shock wave problem which satis- 
S 

Any 

The deviations from the ensemble means, that is, fluctuations of the ensemble 

e ,  incorporate all the time variations and spatial variations in the y and z 
directions such as, for instance, standing waves, turbulence, and the like, and 

especially those fluctuations that result from the discrete character of matter. 

The latter fluctuation component can be separated from the other components by 

using another ensemble 

defined that the fluctuations incorporate as few variations with t, y, and z as 

possible and that the ensemble means still represent smooth functions. Here 

the fluctuations include primarily the contributions of the discrete character 

of matter. The ensemble means depend not only on x but usually also on y, z, 

and t. 

which is a genuine fraction of ensemble E and is so 1 

Since the statistical characteristics of the realization of the shock wave L25 .. . 

transition do not depend on y, z ,  and t, it applies that 

< Np, E ,  g>g where the crossbar indicates that a mean is taken over y, z ,  and t. 

Outside of (0, Ls) it applies, of course, that Cy, Q, = 

< N r ,  5, 5 > p .  = 
m, 

f p ,  
and <g>g.Z< 

means of E 1’ 

2.2.2. 

0:. < 
unless a deviation from this stipulation is expressly stated. 

Taking the Means and Integrating Over 
the Basic Equations 

The conservation equations for the shock wave transition or simply the shock 

wave relationships are now obtained with the aid of Eqs. (3b) and (51, (61, and 
( 7 ) .  Some additional denotations are required for this purpose: 

16 
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t o t a l  mass density 

- 
- t o t a l  mass veloci-t.y 

t o t a l  pressure tensor 

= t o t a l  thermal f l u x  vector 

= internal energy per unit  of volume 

= Maxwellian stress tensor 

= charge density 

= f lux  density 

= Poynting vector 

In any desired reference system w e  define 

U e  =: 21 front s i d e  
2, = 51 rear 



Illll I 1  I 1 1 1  I 1  I II I I  I I I I I I  I I 

The following d e f i n i t i o n s  apply i n  the s p e c i f i c  reference system Bo: 

2. = y o  
_u, = y, 

Moreover, i n  order t o  character ize  any desired point  outs ide the shock 

wave area within the system KO, we introduce x 

W e  i n t eg ra t e  the  Eq, (5) from + x t h u g h  xo over x, and take the mean 

and x where x > Ls and x 1 < 0. 
0 1' 0 

1 
over y ,  z and t. L 2 L  

x E  lg d x = O  
X. 

X. (9)  

H e r e  w e  exploited the f a c t  t h a t  it appl ies  outs ide the shock wave area s - 
t h a t  

define [ A ]  = A 

$+= 0 and 3 ay -5 0 I a;! a = O  and t h a t  pp = pp, and so  on. Moreover, w e  

1 - *om 
Now, what is the in t e r r e l a t ionsh ip  ex i s t ing  outside the area S between 

the ve loc i ty  vectors of the d i f f e r e n t  p a r t i c l e  types? 

wind [Hundhausen e t  al. 1967; Neugebauer and Snyder, 19663 have shown t h a t  

U m  U appl ies  outside of S. 

and 2 outside of S ,  due t o  the absence of any s p a t i a l  and t i m e  de r iva t ives ,  t h a t  

Measurements i n  s o l a r  

I t  follows f o r  a two-component plasma with p =1 
fL - 

and 

18 



ij = e,n, + e, n, = 0 

and 

j = e,nt IL, + e, nL U, = 0 

and hence, strictly speaking, that 
- 

However, the solar wind plasma represents a two-component plasma of electrons 

and protons only in approximation. The next frequently occurring ions are 

He -ions w i t h  a mean of n 

0-15 (cf. Table I). The cited data originate from measurements performed by 

the satellites of the Vela series [Hundhausen,Asbridge, Bame, Gilbert, and Strong, 

1967; Ness, 19671. 

ff 0.04, although this value can rise as high as d", = 

In the case of a general multicomponent plasma, we can argue as follows. 

It follows from Eq. (6) for an homogeneous, steady-state Vlasov plasma where 
C = 0 ,  and consequently, where F = 0 ,  that 

P 7.1 

E i U  X H = O  - -r 

This means that the component of u 

- H is equal to the drift velocity 
which is oriented perpendicularly with respect to 

gD=E x E/!/H2 
7 

for all 1 

Consequently, in a steady-state, homogeneous Vlasov plasma, the velocity 

differences can occur only in the direction of the magnetic field. They are 

further limited by the occurrence of instabilities of the dual-flux instability 

type. These are encountered when exceeding critical velocity differences between 

distributions that are displaced with respect to each other in the vspace. 

addition, h =  0 and '?l = 0 must be satisfied in this case. The instable waves 

can be purely electrostatic or ion acoustical waves, but also electromagnetic 

waves such as "whistler waves11 or Alfvgn waves. However, important processes 

occur even below the critical velocity difference. 

In L29 
A 

For illustration, let us consider a plasma whose magnetic field can be dis- 

regarded. The ion acoustical waves encountered in the plasma are damped at 

velocity differences below the stability limit, but their damping is reduced 

19 



as we approach the critical velocity difference. This will result in an increase 

of the fluctuations 6E and hence of the correlation terms C 
can be described by the Balescu-Lenard equation. The fluctuations cause the 

destruction of anisotropy and of the velocity differences, since the terminal 

state described by the Balescu-Lenard equation is a state of thermodynamic 

equilibrium [Montgomery and Tidman, 1964, Section 7.21. Therefore, due to the 

requirement that L 9 L the plasma must have a sufficient distance from the 

stability limit. In other words, excessive proximity to the stability limit and 

maintaining the anisotropy of the plasma are incompatibilities. However, a 

paper by Joyce et al., [I9671 has shown thatthe effect of the fluctuations SE 
will decrease rapidly when we move away from the stability limit in the direction 

of greater stability. Here it is insignificant for our consideration that Soyce 

et al. [1967] assumed a plasma in flux. 

which in this case 
CL 

S 

From now on we shall stipulate that, outside of S, all u are equal to 
-P 

u = v. 
1J. 

In that case, it follows from Eq. (9) that 

C p v , l = o  

o r  that 
a , L  = p,",,, = P I  

(11) 

where V = n - lwhile M represents the mass flow through the area S. 
n -  

Now w e  determine the impulse conservation equation. For this purpose, we 

summate the Eqs. (6) for all particle types and make use of the definitions 8. 

We find that 

a ( P U K )  + & ! ( k t  + I ~ , - u p , K  u'p,e). 
t- a t  

f as, 
cz a t  

and consequently, that 
j .  j x e),=+ - - - 

2 Xe - 

L30 

Subsequently, integration over x from x through x and taking the mean over L3l 1 0 
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B -  

! 

y, z, and t, together with H = - 5 will yield n 
X. 

Because of V/C < 1 we disregard the contributions of the electrical field 
to the Maxwellian stress tensor, using Eq. (loa). Now we must determine the 

integral f; F . It applies that 
W,P -p 

X. 

The integral will not yield a quantity outside of area S ,  because of C = 0. 

As a rule, C will differ from zero when inside the area S. In the case of shock 

waves that are controlled by collisions we can use Boltzmann's collision integral 

for C which due to the conservation of the impulse will yield 

I-L 
CI 

I.L 

upon collision. In our case, we are concerned with shock waves where collective 

interactions are important and where simple Coulombian collisions can be dis- 

regarded. Now we must also allow interactions of greater range. In that case, 

it will usually no longer apply that 

but only that 

which, however, is adequate for our purposes. Thus, we obtain: 

In accordance with the energy equation of electrodynamics, we obtain the 
following for d E: 

21 



yield : 

Consequently, the usual integration over x and taking the mean will 

X. 

Using Eq. (loa) we obtain for the area outside S :  

and in the system K * 0' 
I s 2.- - - 

or 

where 1 is the 

Now after 

that were used 

- - 

and 

standard tensor. *. 
appropriate modification, the same arguments apply to cr dr  
for the impulse conservation equation. Hence, 

Y. r 

X. 

Integration of the equation div E =  0 over x, and taking the mean over y, 
z, and t will yield: 

L33 

C H * I  = Q 
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Now w e  apply the  integrat ing 

r o t  E 

and obtain: 

and mean-taking procedure t o  t h e  equation 

a!d 
- a t  - - -  

where E is t h a t  p a r t  of Ewhich is located i n  the plane y ,  Z. The equation 

[E 1 = 0 is equivalent t o  the r e l a t ionsh ip  [ E X  E] = 0. -tr 
Eq. ( loa) w i l l  y i e ld  [ n _ x ( v x  H-1 = 0. 

-tr 
Subsequently, 

The x-component of t h i s  

Moreover, the following 

vector equation is s a t i s f i e d  ident ical ly .  

statement is useful  f o r  the subsequent algebra t o  

determine the  s t e p  functions. We defined the  reference system B i n  such a way 

t h a t  the area S has a mean veloci ty  component of zero with respect t o  B i n  the 

x d i rec t ion  (cf. Figure 2 ) .  We sti l l  lack a c r i t e r i o n  t o  define the s ta te  of 

motion of B i n  the y and z direct ions.  But we are now able t o  state such a 

c r i t e r ion .  It is seen from Eq. (15) t h a t  i n  the case of H f 0, t h a t  is, 

eof go”, a reference system can be achieved, by a t r a n s l a t i o n  i n  the y and z 

d i rec t ions ,  where it appl ies  on e i t h e r  s i d e  of S t h a t  E& = 0,  or t h a t  

0 

0 

0 

n 

0’ W e  s h a l l  give t h i s  system the f i n a l  denotation B 

2.2.3. Treatment of t h e  Pressure Tensor 

So f a r  w e  f a i l e d  t o  make a statement on the tensor  P = CP . However, it 
= P=b 

follows from C = 0 outs ide of area S as w e l l  as from a =O, 2 =o, a =o and 
II a t  aY 

ab, = o t h a t  

L35 

L36 

Moreover, with Q. ( loa) ,  w e  obtain 

2% = o  
a v  ( (v  -En)” 5)  * 

This w i l l  y i e ld  the  general form of f according t o  our model 
1.L 



with 

It appl ies  s p e c i f i c a l l y  i n  the reference system B t h a t  f = f 

because o f  u - 0. Consequently, the d i s t r i b u t i o n  functions of a l l  
0 CI 

-D - the p a r t i c l e s  

have axial symmetry with respect  t o  the magnetic field[Chew,Goldberger, Low, 

19561. According t o  the d e f i n i t i o n  Eqs. ( 4 )  and (8) t h i s  means t h a t  the pressure 

tensor  has a diagonal shape i n  a Cartesian coordinate system K as shown i n  

Figure 3 which has the coordinates x ,  7, and z. Since 7 is located i n  the 

d i r ec t ion  of the magnetic f i e l d ,  the following appl ies  i n  K * 

0 

- 
0' 

!? X 

Figure 3 .  Sketch t o  define the primary axis  
coordinate system of the pressure tensor  

with respect  t o  the  shock wave coordinate 
system K 

0 - 

0' 
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I 

, 
I 

i Now we ca l cu la t e  the tensor  components i n  the system x ,  y ,  z. For t h i s  - - -  
purpose w e  require  the u n i t  vectors i n  the x, y and z direct ions i n  the x, y ,  z 

a 
system: - 8= (sin 8 ,  - cos 8, O > j i ,  7, ; 

f =  ( c o s  8, sin Q, 01%. y ,  p 

1 - - d =  ( 0 , 0 ,  1 )  2 ,  y ' ,  

In t h a t  case w e  obtain:  

with 

pL sin2 0 + pII cos2  0 

I/~(P, - P,, ) s i n  2 Q 

I/~(P~ - P,, ) s i n  2 0 

= P L  cos2 Q + P I , s i n 2  o - i  0 

Moreover, w e  obtain with Eqs. ( 4 )  and ( 8 ) :  

c p = PL + 1/2 P,, 

(17a) 

F ina l ly ,  it follows from Eq. (16) t h a t  the thermal f l u x  vector 3 
must be located p a r a l l e l  or a n t i p a r a l l e l  t o  H:  - 

(17b) 

v 

/38 
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L39 Apart from 8, the pressure tensor is characterized by P,, and PA. 

Having derived the Eqs. (111, (121, (131, (141, (151, and (171, we must now 
ask ourselves whether we have an adequate number of equations to achieve the ob- 

jective of this investigation. This objective is a collection of formulas which 

can be used to compute the characteristic magnitudes for side 1 of S when these 

magnitudes are known for side zero. 

and g. Because of Eq. (17~1, p i s  defined by a scalar magnitude. Consequently, 

we have 1 + 1 + 1 + 3 + 3 + 1 = 10 unknown quantities. However, the Eqs. (ll), 

(12), (13), (141, (151, and (17) yield only 1 + 3 + 1 + 1 + 2 = 8 defining 

equations. Consequently, we have two more unknown quantities than we have 

equations. It is seen immediately that this is due, on the one hand, to the 

stipulated anisotropy of the plasma and to the possible presence of a thermal flux 

vector %in an homogeneous, steady-state Vlasov plasma. 

two meaningful additional relationships in the next section. 

Each side is characterized by f ,  PI, , PI; 1, E 

We shall attempt to find 

Finally, it shall be noted at the end of this section that we can of course 

replace the quantity of the ten magnitudes f' t Fu 9 PL I 1, E 
which are considered known, by some other quantity of ten independent magnitudes. 

In many cases this will be the more practical procedure. 

2.3. Theoretical Models for Noncollision Shock 

and p on side 0 

Waves, and Ob_s_e_rvation Results with Respect 
to Shock Wave Structure 

The following section shall first present a brief description of the most 

important models for the structure of noncollision shock waves. Subsequently, 

the observation results with respect to shock wave structures, acquired from space 

probes and satellites, shall be compiled. These data will yield an indication as 

to the two required additional stipulations. 

2.3.1. Review of Some Models of Shock Waves 
in a Collisionless Plasma 

One important magnitude that affects the characteristics of a shock wave is 

the ratio of gas pressure to magnetic pressure ahead of the shock front. Since 

the pressure tensor is not a spherical tensor, we shall initially use the arith- 

metic mean of Pl 

1/2(PlO + Pll0). 

However, for the purpose of the following, we shall use the magnitude 

and 5, 0 0 
as a measure for the plasma pressure, which is 

H2 

4rr 
The ratio to magnetic pressure will then be ( p n 0  + PIo)/zO_. 

L40 
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which already occurred in Table 2 and in Figure 1 and which in the case of 

Pll0 = PLo turns into the expression s 
0 

represents the square of the ratio of sonic velocity to Alfvgn velocity, VA. 

of Bazer and Ericson [1958] which then 

The models of noncollision shock waves can be clhssified into two groups 

according to the value of 6; models where &,% 1 

this case we usually stipulate that the particle distributions f are isotropic 

Maxwellian distributions. A s  a rule they are completely disregarded in the case 

where go< 1. However, the models are easily expanded toward anisotropic dis- / 41 
tributions if we exclude only those f which cause instabilities with ex- 

cessively rapid growth periods. 

and models where so4 1. In 

CL 

P 

The group where so 5 1 includes theories proposed by Parker C19591, Moiseev 
and Sagdeev [1963J, Tidman [I967 a, b], Colgate and Hartman C19671, and Kennel 

and Sagdeev [1967 J.  Parker [ 1,9593 considered two plasma streams without magnetic 

field that are subject to mutual interaction as a result of dual stream instability. 

Where the velocity difference was greater than the thermal electron velocity 

he obtained a thickness of the shock wave transition of about= (mi/me) 

where % represents the Debye length. 
with decreasing velocity differences, to about e L 

1/2 
' LD 

The thickness of the transition decreases 

D- 
The theory of Moiseev and Sagdeev [1963J treats shock waves where 8, = Oo 

and where Alfvgn turbulence is caused as a result of anisotropy within the 

shock wave. 

Tidman [1967 a, b] initially treated a shock wave without magnetic field. 

The velocity of the shock wave V is stipulated to be considerably smaller 

than V 

distribution function where the distribution function f is assumed to be 

a weighted mean of the distribution functions in front of and behind the shock 

front within the area S. On the front side it applies that T /T The 

quasilinear theory with ion acoustical waves is used in the forward part of the 

shock wave. A rough estimate made on the basis of the spatial growth rate will 

n,O' 
= (UT, dme)1'2. A Mott-Smith equation is written for the ion the, 0 9 

ion 

el ion' 
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y i e l d  a shock wave thickness o f  some V where w is the  ion plasma cir- 

c u l a r  frequency on the f r o n t  s ide .  The magnetic f i e ld  is taken i n t o  account sub- 
n , d w p i  ,o P i  9 0  

sequently,  and a thickness of $ M 2Vthe, l/wcel,o is obtained f o r  the magnetic 

f i e l d  t r a n s i t i o n ,  where w is the  e l ec t ron  gyro c i r c u l a r  frequency t h a t  

corresponds t o  the t ransverse component of t he  magnetic f i e l d .  

r e q u i s i t e  is s t a t e d  for disregarding the magnetic f i e l d  when studying the plasma 

t r ans i t i on .  This model can be used without major modifications but i n  any event 

only f o r  s  ̂ 5 1. 

respect  t o  magnetic f i e l d  s t r u c t u r e  i n  two other  papers [Tidman, 1967; Tidman and 

Northrop, 19683. Waves i n  f r o n t  of and behind the  shock f r o n t  are discussed i n  

pa r t i cu la r .  

-1 9 0  

Only one pre- L42 

The same shock wave model is t r e a t e d  i n  more d e t a i l  with 
0 

Colgate and Hartman [1967], using a computer model, considered the i n t e r -  

ac t ion  between two plasma streams re su l t i ng  from r e f l e c t i o n  of a plasma stream 

against  a w a l l .  It is s t i p u l a t e d  t h a t  the plasma streams i n  question are almost 

cold where T 

l lplates. l l  In other  words, a one-dimensional ca l cu la t ion  procedure is used. This 

w i l l  y i e ld  a shock wave thickness of about V 

t r a n s i t i o n  of the ion d i s t r i b u t i o n  function. The thermalization of the electrons 

takes place a t  a faster rate. 

/Tion = 2.7, and they a r e  represented by pos i t i ve  and negative 
e l  

- 88(mi/me)1/2/w f o r  the 
n,O P i  , O  

Two other  t h e o r e t i c a l  models f o r  noncollision shock waves where 8 = 0" and 

90" and where ŝ  5 1 w e r e  proposed by Kennel and Sagdeev C1967, a ,  b]. H e r e ,  i n  0 
the case where 8 
which is ca r r i ed  downstream f o r  an extended dis tance because of weak damping. 

The fading dis tance of Alfvgn turbulence is much g rea t e r  than the thickness of 

the t r a n s i t i o n  area f o r  the v e l o c i t i e s  and pressure tensors  of t he  ions and 

electrons as w e l l  as the magnetic f i e l d .  Magnetosonic waves are considered i n  

the case where €3, = 90". 

0 

= 0 ,  the  l lf ire-hosell  i n s t a b i l i t y  w i l l  cause A1fve)n turbulence 
0 

Let us now consider the case where go < 1. This includes theories  by 

Parker [1958, 19611, Davis e t  al. [19581, Auer e t  al. C1961, 19621, Fishman e t  a l .  

[1960], as w e l l  as Litvak [1960] and Camac e t  al. [1962], Rossow [1965, 19671, 

some papers by members of the Courant I n s t i t u t e  of New York [Gardner e t  al. 1958; 

Morawetz, 1961 and 1962; Morton, 19641, and Sagdeev C19661. 

28 



Parker C1958, 196 1 considered shock w ves where 0 = 0 ,  associated wi 0 t e L43 
generation of Alfvgn waves by two plasma streams with V 
each other for a certain distance. 

and V which penetrate f -0 -1 

In the case of Davis et al. [1958], the shock wave under consideration with 

8 = 90" propagates into a cold plasma. The transition area between the two sides 

0 and 1 includes a laminary, nonlinear wave train having a wavelength in the 

order of 

the width of the transition area corresponds approximately to the mean free path 

length. 

0 

~ W A  (act ace):!. This wave train is bounded by collisions so that 

Auer et al. c1.961, 19623 used a one-dimensional computer model to investi- 

gate a shock wave with 8, = 90" which was generated by energizing an electrical 
field oriented vertically with respect to the magnetic field. In this case, the 

plasma in front of the shock wave is cold and is represented by positive and 

negative "plates.I1 

sufficiently smaller than two, this will yield a transition area consisting of a 

laminar wave train similar to that of Davis et al. C19581. In the case of 

sufficiently great M -values a disordered transition area is obtained whose width 

is 

structure of length scale c/w which decreases in strength and length scale 

over time. u) is the electron plasma circular frequency. 

In the case of Alfven Mach numbers V n,O/VA,O = MA which are 

A 
v A , O  / o ~ ; , ~ =  c /apso .(mi/m,)"'*= c / u p : ,  o and whose start has a fine 

Pe ,O 

Pe 7 0  

These calculations were expanded by Rossow C1965; 19671 to the case where 

In the stipulation ni 2 n 

this case, n is the numerical ion density and n the numerical electron density. 

is dropped and where oblique shock waves are used. e 

i e 

Sagdeev [19661 considered shock waves with s  ̂ < 1 and 0, = 90". The 
0 

currents that cause the change of the magnetic field lead to large velocity dif- 

ferences, especially in the case of small densities, that will trigger electron 

oscillations via dual current instability. 

The papers from the Courant Institute which were mentioned before are con- L44 
cerned with laminar structures similar to those of Davis et al., that is, wave 

trains with ordered particle trajectories. These models resulted in objections 

with respect to their stability. The magnetic field variations are caused by 

currents of the type that, for instance, in the case of Sagdeev C19661, can 

trigger instabilities of the dual current instability type. 
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Probably the most s a t i s f a c t o r y  and progressive theory o f  c o l l i s i o n l e s s  

shock waves with s  ̂
[1960], and Camac e t  al ,  C19621 f o r  shock waves with Bo = 90". 

a part of t h e  ordered energy i n  f r o n t  of the shock wave is transformed i n t o  

wave energy. These are waves having the  ' lwhistlerlf  type of wave form i n  t h e  wave 

length range from c/w = r through c/# = r.. These waves contr ibute  t o  pres- 

s u r e ,  energy densi ty ,  and energy flux. Similar  t o  phonons i n  a s o l i d ,  they are 

described as plasmons by a k i n e t i c  wave equation, These plasmons are generated 

when a plasma performs work opposing the wave pressure. In the b i r t h  i n t e r v a l  

of t he  plasmons, the magnitudes of densi ty  F ,  ve loc i ty  u, magnetic f i e l d  €€, and 

so on w i l l  vary i n  order t o  assume t h e i r  new values. The width of t h i s  t ran-  

s i t i o n  area L- w a s  estimated by the authors a t  8/8 k, where k is a typ ica l  wave 

vector of t he  above wave d i s t r i b u t i o n ,  meaning t h a t  k a m o a t s  t o  some l/r.. 

p w  is the r a t i o  of wave pressure t o  magnetic f i e l d  pressure. 

of the  shock wave t r a n s i t i o n ,  the plasmon d i s t r i b u t i o n  i n  the  k s p a c e  is 

characterized by two sharply defined maxima which are located symmetrically with 

respect t o  the  k - 0 plane. The locat ion of t he  maxima i n  the  &space  is deter-  

mined by the fact  t h a t  the frequency i n  the equilibrium plasma system assumes a 

minimum a t  these po in t s ,  under the secondary condition t h a t  t h e  plasmons move 

only i n  the  y d i r e c t i o n  within the shock wave coordinate system. Upon propa- 

gat ion i n  the negative x d i rec t ion ,  t he  wave d i s t r i b u t i o n  w i l l  become continuously 

broader and more symmetrical. Wave energy is no longer produced i n  the in t e rva l  

behind the  t r a n s i t i o n  a rea ,  because of the absence of veloci ty  gradients.  Plas- 

mon c o l l i s i o n s  under simultaneous symmetrization of t he  wave d i s t r i b u t i o n  w i l l  

produce waves ofprogressively increasing frequency which are f i n a l l y  l o s t  as a 

r e s u l t  of damping. The slow MHD waves which are a l s o  produced by c o l l i s i o n s  can 

experience only higher-order col l is ioi is  among each other. This w i l l  r e s u l t  i n  a 

lesser degree of damping so t h a t  they f i n a l l y  predominate. A t  a g rea t e r  d i s -  

tance even they w i l l  be l o s t  due t o  damping. F ina l ly ,  under x = 0 (cf. Figure 2 )  

a l l  the wave energy has been transformed i n t o  thermal energy. 

< 1 is the  theory advanced by Fishman e t  al. [1966], Litvak 0 
In  t h i s  theory 

Pe e p i  1 

- 

U W 

1 
In the beginning 

Y 

L45 

These models can be described q u a l i t a t i v e l y  approximately as follows, using 

Figures 2 ,  4 ,  and 5 ,  i f  w e  disregard the laminar models which are subject  t o  

strong objections because of the s t a b i l i t y  problem. The order ly  energy of the 

plasma on the f r o n t  s i d e  of t he  shock wave is p a r t l y  transformed i n t o  wave 



energy i n  an area whose width is L... 

Lv - L--, 
which is entered by the lesser p a r t  of the wave energy by means of propagation 

against  t he  d i r ec t ion  of the  flow; w e  cal l  t h i s  the advance area. However, the 

g rea t e r  p a r t  of the  wave energy en te r s  the in t e rva l  (0, L~ - L, - I,-) v i a  propa- 

gation and convection. H e r e ,  t he  wave spectrum is modified during propagation i n  

the  negative x-direction as a r e s u l t  of wave-wave in t e rac t ion  and particle-wave in- 

t e r ac t ion  so  t h a t ,  na tu ra l ly ,  t he  d i s t r i b u t i o n  functions of t he  p a r t i c l e s  w i l l  change 

as  well. 

p a r t i c l e  energy u n t i l  it becomes so s m a l l  a t  point x = 0 t h a t  it can be disregarded. 

During t h i s  process,  r e l a t i v e l y  g r e a t  gradients of (Ls - Lv - b;, Ls - L ) etc. 

w i l l  be encountered i n  the  i n t e r v a l  i, 4, and the  l e s s e r  gradients i n  the  i n t e r v a l  

(0, Ls - Lv - b;). 
(Ls - L~ - Lr. 

t he  p e c u l i a r i t i e s  of the p a r t i c l e  d i s t r ibu t ions  i n  the veloci ty  space. 

This area corresponds t o  the  x-interval- ( L ~ -  
U 

Ls - Lv). This i n t e r v a l  is p-receded by the in t e rva l  (L  - L,, Ls) S 

U 

Subsequently, t he  wave energy continues t o  decrease a t  t he  expense of 

V 

The s t rong wave spectrum develops i n  the in t e rva l  

Ls - L ) as a r e s u l t  of the inhomogeneity of the medium and/or of L46 u ,  V 

\ -.- L“ - -- ---I 

L,  - L ,  - L ,  L,..L, Time &- 

Coherent o s c i l l a t i o n g  !fl,-%pid . f l uc tua t ions  
0.5</< 15Hz ’ ‘J f > 3 :-la 

Figure 4. Explanation of lengths L, and with the a i d  of f i v e  typ ica l  
magnetic f i e l d  p r o f i l e s  recorded upon penetration of t he  e a r t h ’  shock 
wave, according t o  Heppner e t  al. [1967]. 
G, Ls - 4) and one example f o r  an i n t e r v a l  (Ls - &, b), a l l  o f  which 
are contained i n  the in t e rva l  (0, L,) which, however is too large t o  be 
represented. 

Plot ted a r e  i n t e r v a l s  (Ls - 4 
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Figure 5 .  Plasma and magnetic field observations by 
Pioneer 6 ,  recorded upon penetration of the transition 
region and the earth's shock wave, according to Wolfe 
and McKibbin E19681 and Ness [I9663 with an explanation 
of the magnitudes L- and L 
(Ls - Lv - L.- u' s 
UT denotes universal time. 
stated in earth radii, Re. 

which define the intervals 
S 

L -uLv) ( where L V = 0) and (0, Ls). 

The distance from earth is 
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r Now we shall establish some nomenclature once and for all: the transition 

6 interval (Ls - Lv - L.. 

interval (0, L 

(0, Ls) shall be called the shock wave region, S. 

Ls - L ) shall simply be called the shock wave. The 
U' V 

L48 - Lv - Lo.) shall be called wave region. The total interval 
U 

What is the picture of the shock wave structure that is conveyed by the 

observation data acquired from space probes and satellites? 

2.3.2. Observed Data on-Shock Wave Structure Acquired from Space Probes 
and Satellites- 

Some observation data on the structure of the shock wave that is generated 

in the flow about the earth's magnetosphere are already available, while very 

little is known on the structure of shock waves propagating freely in solar wind. 

This is due primarily to the high time resolution required for such investigations 

which so far could be achieved only in proximity of earth when investigating the 

earth's shock wave. The most informative observations of the structure of the 

earth's shock wave to date were acquired with the aid of the satellites OGO - A 
[Holzer et al., 1966; Smith et al., 1967; Heppner et al., 19671, Vela 2A and 

2B, and specially Vela 3A and 3B [Argo et al., 1967; Greenstadt et al., 19681 

in addition to the space probes Mariner IV [Siscoe et al., 19671 and Pioneer 6 
[Ness et al., 1966; Wolfe and McKibbin, 19681. These are measurements of 

particle distribution functions and especially magnetic field measurements. 

When we compare these measurements with each other and with the theory we must 

keep in mind that the density, velocity, and pressure tensor components of the 

ions and electrons in solar wind as well as the magnetic field are subject to 

fluctuations. Another difficulty is due to the fact that the measurements at 

any point of time are taken at only one point in space.. Consequently, spatial 

and time fluctuations cannot be separated from the outset. 

different positions must be taken into consideration when comparing the measure- 

ments. Even in these measurements the time resolution of the plasma detectors 

is not adequate. 

Moreover, the 

L49 

The magnetic field structure as acquired from the measurements of OGO - A 
was investigated in detail by Heppner etal. C19671. 

lists some typical observations made aboard this satellite of the magnitude of 

the magnetic field as a function of time, presented for classification of the 

majority of the observed shock waves. 

Figure 20 of that paper 

Figure 4 was plotted on the basis of 
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t h i s  information. The s t eep  rise on the  f ron t  s i d e  of the  shock f r o n t  takes 

place within about 50 t o  100 km, which corresponds approximately t o  the  ion ic  

Larmor radius  a t  Alfvgn ve loc i ty ,  and t h i s  i n  f r o n t  of t he  shock wave ( typ ica l ly  

a t  70 km where n = 10 cm-'). 

a s t e e p  r ise of t he  thickness  mentioned above, and a r e l a t i v e l y  broad maximum. 

Subsequently a new value is reached asymptotically. The first minimum indicated 

behind the maximum i n  Figure 4 is seen more pronounced i n  severa l  examples and 

should be given more emphasis a s  pa r t  of the  s t ruc ture .  The fact t h a t  the  magnetic- 

f i e l d  p r o f i l e  remains constant i n  the  shock wave over a per iod of severa l  minutes, 

even down t o  d e t a i l s ,  has been emphasized by Greenstadt e t  a l .  C19681. A s i m i l a r ,  

smoothed magnetic f i e l d  p r o f i l e  was a l s o  measured by Pioneer 6. The magnetic f i e l d  

measurements near the  e a r t h  t h a t  a r e  described the re  [ N e s s  e t  a l . ,  19661 a r e  

remarkable insofar  a s  they w e r e  acquired under very low Kp-values, O+ and 00. 

Consequently, w e  can assume that only a small p a r t  of t he  va r i a t ions  are due t o  

i r r e g u l a r i t i e s  i n  s o l a r  wind. The smoothed magnetic f i e l d  p r o f i l e  measured by 

Pioneer 6 s t a r t e d  out  with 13 y i n  the  outer  t r a n s i t i o n  region,  Cropped t o  about 

9 y ,  rose to 18 y ,  and f i n a l l y  dropped t o  the  in te rp lane tary  value of 3 y .  This 

magnetic f i e l d  profile can be seen i n  the bottom curve of Figure 5 .  

s i d e r  t he  region which is character ized by la rge  values of the  variance 0 of a 

magnetic f i e l d  component over 30 s t o  be the  shock wave region,  the  s t a t e d  

value of L M 2 R w i l l  r e s u l t  s ince  the  variances become small a t  a dis tance 

of about 2 R from t h e  s t eep  rise. However, w e  a l s o  note  tha t  the  condi t ion [ 50 

L < L  which was s t i p u l a t e d  a t  the  beginning of Para. 2.2.1. is not s a t i s f i e d .  

Consequently, L can have a d i f f e ren t  value i n  the  t r u l y  "one-dimensional" 

case. Advance waves cannot be iden t i f i ed  i n  t h i s  example. 

The nonsteady processes mentioned above a re  superimposed on the  smoothed 

The smoothed magnetic f i e l d  p r o f i l e  cons i s t s  of 

If we con- 

S e 

e 

S 

S 
Therefore, Lv = 0. 

magnetic f i e l d  p ro f i l e .  They a r e  s t ronges t  i n  proximity of x e  L, - L," L . 
S 

Heppner e t  al. [1967] f requent ly  observed wave t r a i n s  extending over some per iods 

with frequencies between 0.5 and 1.5 Hz. 

f i e l d  component w e r e  observed behind the  s t a r t  of t h e  s t e e p  rise. 

in te rpre ted  a s  being waves i n  the  whis t le r  mode in t he  wave length range 

theo re t i ca l ly  required by Fishman e t  al. [19601, Litvak [1960] and Camac 

e t  a l . ,  [1962]. These waves a re  a l s o  encountered with a small  amplitude as 

advance waves i n  the  plasma on the  s o l a r  wind s i d e  of t he  s t eep  r i s e ,  t h a t  

Amplitudes of 4 y in one magnetic 

These w e r e  
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is where L - L < x < L i n  accordance with Figure 4 .  Moreover, waves of higher 

frequencies f > 3 have been observed. A l s o ,  according t o  Siscoe e t  a l .  C19671, 
based on the  measurements of Mariner I V ,  t h e  amplitudes of t h e  nonsteady pro- 

cesses increase i n  proximity of x = L 

excess of severa l  seconds and obtained r e l a t i v e  m a x i m a  i n  t h e  power spec t ra  

during periods from 30 s t o  60 s which w e r e  in te rpre ted  as being to r s iona l  os- 

c i l l a t i o n s  or ien ted  perpendicular ly  t o  t h e  normal vec tor  ". 

S V S 

- Lv. These authors discussed periods i n  
S 

In addi t ion t o  t h e  experiment by Heppner e t  a l .  E19671 which was described 

above, t h e  OGO - A s a t e l l i t e  a l s o  had aboard an experiment t o  determine higher 

frequency magnetic f i e l d  va r i a t ions  i n  a l l  th ree  magnetic f i e l d  components [Holzer 

e t  a l . ,  1966; Smith e t  a l . ,  19671. The usefu l  p a r t  of t h e  measured magnetic 

f i e l d  spectrum included the  frequency range between 3 Hz and 300 Hz. Squared 

spec t ra  w e r e  acquired a t  t i m e  i n t e rva l s  of f i v e  minutes [Smith e t  a l . ,  19671. 
These r e f l ec t ed  changes by severa l  orders  of magnitudes from one measuring in t e r -  

val  t o  the  next. A mean taken over several  spec t ra  revealed a squared spectrum 

of B ( f )  = 1 y2 Hz2/f3 ranging between 3 Hz and 300 Hz. Extrapolation f o r  1 Hz 

provided a variance component for a l l  frequencies above 1 Hz which is o2 = 2 s L5l 

2 B ( f )  df = 1 y . The contr ibut ion of high-frequency va r i a t ions  t o  magnetic f i e l d  

energy is very small ,  i f  w e  consider  t h a t  the  background f i e l d  is g rea t e r  than 

15 y. One five-minute in t e rva l  which began i n  the  outer  t r a n s i t i o n  region and 

ended upon en t ry  i n t o  t h e  in te rp lane tary  plasma, yielded B ( f )  % 5 y Hz /f . In 

general ,  it was found again t h a t  t h e  nonsteady magnetic f i e l d s  increased i n  the 

d i rec t ion  toward the  shock wave. Frequently the  varying magnetic f i e l d s  a re  dis-  

t r i bu ted  simultaneously over a l l  frequency ranges. The s igna l s  i n  the  d i f fe ren t  

components a r e  s imilar .  More recent  measured data  [Olson e t  a l . ,  1968; McLeod 

e t  a l . ,  19681 indicated continuous power spec t ra  i n  the  shock wave ranging a l l  

the  way up t o  10 Hz. Noise s t r a y s  w e r e  measured i n  the  frequency range from 10 

t o  300 Hz, with magnetic f i e l d  amplitudes from 0.01 y t o  0.1 y. Monochromatic 

s igna l s  w e r e  measured frequent ly  i n  t h e  "magneto-sheath" between shock wave and 

magnetopause i n  the  frequency range from 14 Kz t o  140 Hz; sometimes these  s i g -  

na ls  reached amplitudes up t o  1 y. The spec t r a l  densi ty  is much smaller  

on t he  s o l a r  wind s i d e  of t h e  shock wave, However, advance waves a r e  en- 

countered again and again a t  a d i s tance  of several  e a r t h  r a d i i  from t h e  

shock wave. Since these advance waves do not contr ibute  g rea t ly  t o  t h e  

2 2 3  
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energy densi ty ,  t h e  energy f l u x ,  and the pressure,  they can be neglected 

i n  the shock relat ionships .  However, they can be s i g n i f i c a n t  t o  the shock wave 

s t ructure .  

W e  can recognize i n  t h e  data  on magnetic f i e l d  observations the  q u a l i t a t i v e  

picture  which is common t o  these theories.  A s t e e p  rise of t he  magnetic f i e l d ,  

possibly preceded by advance waves, is followed by a broad region of nonsteady 

magnetic f i e l d s  whose behavior is sub jec t  t o  intensive change with respect  t o  

time and space. 

In the case of the plasma measurements the experiments i n  the  satel l i tes  

of the Vela series [Argo e t  al . ,  1967; Greenstadt e t  al . ,  19681 and i n  Pioneer 6 L52 

[Wolfe e t  al . ,  19681 m u s t  be emphasized. The measurements aboard Pioneer 6 

conveyed the following p i c tu re :  a t  some dis tance from the shock wave i n  the 

region ( 0 ,  

concentration n M 25 - 35 

a proton temperature of T 

ion d i s t r i b u t i o n  can be expressed by a Maxwellian d i s t r i b u t i o n  of the above 

temperature and an add i t iona l  high-energy t a i l  or iented i n  a c e r t a i n  d i r ec t ion  

[Wolfe e t  a l . ,  19681. The uncertainty i n  determining T r e s u l t s  from the 

d i f f i c u l t y  involved i n  the  separat ion of t h i s  high-energy t a i l  during evaluation. 

According t o  an evaluation of the measured spec t r a  made by the  author,  

located c lose r  t o  7.5 x lO5'K. 

i n  the r e a r  of the shock wave. Again the question a r i s e s  as t o  the nature of 

the e f f e c t  of the inhomogeneity of the flow behind the  shock wave on the  behavior 

of the d i s t r i b u t i o n  functions. During the approach t o  the  magnetic f i e l d ,  

maximum of 18 y ,  n and T 

-3 

- L-) t he  plasma has a ve loc i ty  Ivl = 225 - 240 km/s, an ion Ls - Lv u 
an e l ec t ron  temperature T = 4 x lO5'K, and e l  

5 5 . 0  - 7.5 x 10 O K .  More exact ly  speaking, the ion 

ion 

is Tion 
The high-energy t a i l  is r e l a t i v e l y  w e l l  developed 

increased, while 11 1 decreased. A t  t he  maximum, w e  
e l  

f i nd  tha t  Tion is approximately unchanged, while T el a 7 ~ O ~ O K ,  I 1 200 hls, 
and n NN 108 c m  . 

4 x lO4'K. The 2 x 10 O K ,  Ti,,, NU 1 x 10 O K  and Ti,l a 1 x 280 km/s, 

index i r e f e r s  t o  ions. The two last-named values m u s t  be considered t o  be qu i t e  

uncertain s ince  they w e r e  located a t  the  l i m i t  of t he  r e so lu t ion  of the plasma 

analyzer. 

F ina l ly ,  i n  the s o l a r  wind the data  were n M 11 ~ m - ~ ,  
5 4 

Tel NN 
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W e  s h a l  now consii Z r  some a' i t i ona  plasma measurements. remarkable 

E f ea tu re  i n  conjunction with our search f o r  an additonal s t i p u l a t i o n  f o r  the 

shock wave theory is the statement i n  [Wolfe e t  a l . ,  19661 t h a t  the d i s t r i b u t i o n  

function of the ions i n  the "magnetosheath" is almost isotropic .  According 

t o  Asbridge e t  a l .  Cl.9661, the e l ec t rons  i n  the t r a n s i t i o n  region frequent ly  

have almost i so t rop ic  d i s t r ibu t ions .  

The paper by Greenstadt et. al . ,  [I9681 reported on the measurements made L53 
by the plasma analyzers aboard Vela 3 A  i n  comparison tomagne t i c f i e ld  measurements. 

Since only the magneticfield component perpendicular t o  the  spin ax i s  is  s ta ted,and 

s ince the plasma data  a r e  not provided i n  very favorable form, it is not possible 

t o  draw many conclusions. It is merely seen t h a t  the ion streams a r e  sub jec t  

t o  g rea t e r  f l uc tua t ions  than they are i n  s o l a r  wind. Argo e t  al . ,  C19671 s t a t e d  

the plasma parameters on both s ides  f o r  several  passes through the shock wave. 

However, except f o r  one instance the ion temperature s t a t e d  was acquired by 

taking a mean, and t h i s  of course does not permit any statement as t o  the 

exact d i s t r i b u t i o n  functions or the  pressure tensor. In the one case which 

was investigated i n  g rea t e r  d e t a i l  the ion temperature acquired from measurements 

j u s t  p r i o r  t o  entry i n t o  the s o l a r  wind plasma was 1 X lo6 OK based on d i r ec t iona l  

d i s t r i b u t i o n ,  and 5 X lo5 OK based on energy d i s t r ibu t ion .  

i n  the spectra  indicated a strong dispersion which w a s  due t o  t i m e  var ia t ions.  

Moreover, the fluxmaximumofthe d i r e c t i o n a l d i s t r i b u t i o n  is not substant ia ted by 

measurements but was acquired through in t e rpo la t ion  by means of an anisotropic  

Maxwellian d i s t r ibu t ion .  Therefore, these measurements a r e  not very dependable. 

Theoretically speaking, an anisotropic  ion d i s t r i b u t i o n  i n  the t r a n s i t i o n  region 

The measured points  

- L ) would not be surpr is ing.  Even g a s  dynamic shock waves 
Ls v 

( L  - L - L;, 
S 

show anisotropy i n  the corresponding t r a n s i t i o n  area. 

Another i n t e re s t ing  observation is t h a t  pos i t i ve  ions are  accelerated 

i n  the e a r t h ' s  shock wave and are then sca t t e red  i n  the upstream d i r ec t ion  

[Asbridge e t  a1.,1968]. 

consis t ing of protons) i n  most instances amounted t o  C 1 % of the numerical 

density i n  the s o l a r  wind, while the mean p a r t i c l e  energy was t y p i c a l l y  four  

The numerical densi ty  of these ions (again primarily 

- 

times as great  as  it w a s  f o r  the s o l a r  wind ions. However, numerical dens i t i e s  /54 
amounting t o  10 % of the data  f o r  the inflowing s o l a r  wind have been measured, too. 
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We have two possibilities for taking this ion contribution into con- 

sideration. For one, it is possible that these ions move for an adequately 

great distance L along the interplanetary magnetic field in the direction of 

the sun, where the helix angle distribution and energy distribution are more or 

less retained. In that case we could allow for these ions by using them for 
the calculation of the different velocity moments as well as for the application 

of the H-theorem which we shall discuss in the next chapter. Here we con- 

sider the back-scattered ions to be part of the plasma on the front side. 

A 

For the second possibility, we can start out from the premise that the 

back-scattered ions have a destabilizing effect. The resulting fluctuation 

increase will cause a trend toward greater isotropy even within the stability 

limits where, moreover, the secondary maximum in the distribution functions 

is reduced which corresponds to the back-scattered ions. If this process is 

sufficiently effective, LA will amount to only a few earth radii R . 
case the shock wave region S will already begin a few earth radii in the up- 

stream direction. The advance wave region will contain advance waves and the 

processes just described. Now, we must use measurements acquired at a sufficient 

distance from the shock wave itself in order to determine the plasma state 

on the front side of the shock wave. It is our expectation that the anisotropy 

of the ion distribution functions is somewhat greater there than the anisotropy 

of that part of the distribution functions which are located about the primary 

maximum in the vicinity of the shock wave. In that case, we might be able to 

explain part of the discrepancy between the anisotropy measurements of Wolfe 

et al. [I9661 aboard Pioneer 6 and of Hundhausen et al. C19661 aboard the Vela 

satellites in relatively close proximity to earth. In any event, the back- 

scattered ions will not cause any difficulties with respect to derivation of 

the step functions. 

In that e 

In summary, we can state under the reservations named above that the ions 

have an almost isotropic distribution function behind the shock wave region 

[Wolfe et al., 19661. According to the information furnished by J. Wolfe, 

the anisotropy measurements of the electrons must be considered highly un- 

certain because of the encountered interference potentials caused by photo- 

electrons. On the other hand, the mean electron temperature in the rear of 
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the shock wave of earth, that is, where x < 0, is lower than the mean ion 
temperature so that the uncertainty with respect to exact information on the 

anisotropy assumes a lesser significance [Olbert et al. 19671. Based on what 

we stated above, it is a natural idea to make the additional stipulation that 

the particle distributions behind the shock wave region are isotropic. In 
that case, it follows that P = P and that q = 0. Moreover, if we 

limit the given distributions on the front side to those where q = 0, it 

also follows that [q 1 = 0. 

444 1,1 n,l 

n,O 
n 

In doing so, we are aware of the fact that the measurements provide state- 

ments only for specific values of the anisotropies and pressure contributions 

of the individual particles, of the magnitude go in the vicinity of earth 
(0.1 - ŝ  < in the tens), of the angle Bo,  and so on. 

0 

Strict justification for these stipulations, and a statement of their 

validity range, can be provided only by a general theory on the 

structure of shock waves in an anisotropic plasma. However, the following 

section contains some physical considerations of a more generalized nature 

which appear to make these stipulations meaningful under certain assumptions 

with respect to shock wave strength. 

2.4. Physical Justification - .. of the Additional 
Stipiilations, and I&-oduction of the 
H-Theorem 

We have seen in the preceding section that all important models of shock 

wave structure state that turbulence develops in a collision-free plasma in the 

vicinity of the shock wave as a result of instabilities and the effect of in- 

homogeneity. After manifold processes this turbulence is finally attenuated 

until the end of the wave region is reached. The waves used to describe this 

turbulence have been substantiated at least qualitatively through observations. 

While the constant magnetic field is the dominant field in front of the shock 

wave region (0, L ) and behind it, and while the wave fields E, (L, t) and E 
(x, t) as well as the fluctuations 6Eand 6Ecan be disregarded over the length 
and time scales under consideration here, all of these magnitudes play a 

significant role within the shock wave region S. 

problem further, we shall consider the H-theorem for the shock wave transition. 

We define 

S 

In order to investigate this 
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where n I En 
P 

all ion types 
= numerical ion density 

Now we multiply E q. (3a) by (1 + log f ) ,  summate over all particle 
P 

types, and integrate over the velocity space. We obtain: 

and consequently 

Taking the mean over y, z ,  and t, as well as integration over x will then 

yield: 
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According t o  our statements a t  the end of Para. 2.2.1., the  l e f t  s i d e  

of Eq. (20a), using the ensemble e w i l l  y i e ld  the same value as f o r  e. 
Consequently, 

1’ 

x, X, 

[ 3 UX e ,  d g ]  = 1 q, dx = f G, d x  (20b) 
X. x. 

Moreover, the Eqs. (111, (121, (131, (141, (151, and (17) w i l l  remain 

unchanged, and so w i l l  the  values of the magnitudes i n  them. The difference 

between the ensembles e and e is f e l t  only within the shock wave region. 1 

This means t h a t  the right-hand s i d e  of Eqs. (20a) and (20b) is determined 

only by the f luc tua t ions  defined i n  e 1 
of the d i sc re t e  nature of t h e  plasma matter. We can a l s o  express t h i s  i n  a 

d i f f e ren t  way. According t o  Dupree C1963, p. 1717, right-hand co lum] ,  it is 

possible t o  s p l i t  off  a component from the functions occurring i n  the Mayer 

c l u s t e r  development of the ensemble means of the f luc tua t ion  products, which 

component expresses the d i s c r e t e  nature of the plasma matter. I f  we drop t h i s  

component, w e  w i l l  obtain the descr ipt ion of a ” f l u i d  type” medium which is 

described completely by the Vlasov equation. 

which incorporate primarily the effect 

Therefore, we s h a l l  b r i e f l y  invest igate  the consequences r e su l t i ng  from 

the s t i p u l a t i o n  t h a t  f w i l l  s a t i s f y  the Vlasov equation f o r  a l l  p a r t i c l e  

types p. In t h a t  case,  it w i l l  apply t h a t  C = 0 and G = 0 ,  and 

hence a l s o  t h a t  

CL 9 %  

CL 9 %  II ,E1  

and even more so t h a t  
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Before we can derive some statements from the observations, we must still 

discuss the interrelationship existing between the measured magnitudes and the 

ensemble means. According to the magnetic field measurements with relatively 

great time resolution which were cited in Section 2.3, there are highly 

instationary processes of small time scales present within the shock wave region 

(0, Ls) which make it appear that the time resolution of the plasma experiments 
is insufficient by far in order to acquire f = N > . Therefore, we 
can only hope that we will be able to determine the distribution functions 

f ,,e 
Since, according to the principle of plasma analyzers, only candom samples of 

distributions are measured in different regions of the velocity space during 

one measuring cycle, it will then be necessary to take means over several 

measuring cycles. During this period, f 

for instance, due to the satellite's motion. 
ness Le- itself, iii most iiistances this condition is satisfied, for instance through- 

out the transition region between magnetopause and the earth's shockwave. 

Since the plasma measurements in the transition region always took place in 

areas subject to magnetic field fluctuations that cannot be neglected per se, 

we shall attempt to derive an equation corresponding to Eq. (20a) where the 

upper integration limit x is still located in the wave region. Using the 

definition A(x = xs> - A ( x  = x o )  = [ A  1"" 
XO 

L59 

9% el 

= < N >e which do not include the instationary processes by definition. 
CL 

must not be subject to major change, 

Except i n  the shock wave of thick- 
CL ,e 

U 

s 
, it applies that 

X'  

= i' cc, dx 
Y. [ [ Pp,g, u r  001 Qr, e ,  dvJ  x, 

Where x = x it applies, of course, that f = f = f  and that 

as well as a/at = 0. we can also write 

0 CL P,&l I-1 ,e 
2&=a-; , -  

3 y -  a a  - 0  

X. 
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The left-hand side of Eq. (20~) is determined by the measurements. 

f c8. dx If we can neglect the curly bracket we will obtain the integral 

which must be equal to zero when the Ylasov equation applies. 

Now we shall assume that the distribution functions are subject to 

point symmetry with respect to the mass velocity y r  =I 2 S Y  t p , g  d5! my where 

9~ The observations indicate that this approximation will be 

adequate for our purposes. In that case we will obtain the following if we 

neglec6 the curly bracket: 

P e  P 
f p C  '1 

or 

where we have used the particle number conservation equation [ v  

Moreover, we first approximate fCL,E 

distrubution and calculate H 

magnitudes located parallel and perpendicular to the magnetic field in the usual 

manner. 

- nCJ = 0 
n , *  

by means of an anisotropic Maxwellian 

and HE. The notations11 and Ldesignate the 
C1,E 

$,,e = = p , e  
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where N. is the Ebltzmann constant. 

More over, w e  obtain 

The constant includes only na tu ra l  constants. 

Now w e  obtain 

and 

Now w e  a l s o  make use of the observation t h a t  the next frequent ion type 

i n  s o l a r  wind a f t e r  the protons,  which is H e + + ,  has always been measured a t  

four  times the temperature. Under the assumption t h a t  the temperatures of a l l  

ion types change a t  the same r a t i o  during the shock wave t r a n s i t i o n ,  and 

t h a t  t h i s  appl ies  t o  T,,and w e l l  as t o  TL , w e  obtain the r e s u l t  t h a t  

is equal f o r  a l l  ion types and t h a t ,  consequently, 

6,.l:~ 
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The plasma measurements by Wolfe e t  al.  C19681 aboard Pioneer 6 y i e ld  

the following f o r  t he  e a r t h ’ s  shock wave: 
I“‘ 

and, consequently, 

- [ H e ]  ;; = 3 - 5  & 0.7 

This makes allowance f o r  the experimental uncertaint ies .  Moreover, the un- 

c e r t a i n t i e s  include an estimate of the possible e f f e c t  of the back-scattered ions 

described by Asbridge e t  a l .  [19681. The point of l e a s t  magnetic va r i a t ions  was 

used as the reference point i n  the rear of the shock wave. Allowing f o r  the 

flow inhomogeneity behind the shock wave w i l l  cause l i t t l e  change i n  these re- 

s u l t s ,  nor w i l l  the approximate incorporation of the e f f e c t  of the turbulence 

which is expressed by the remaining E- variat ions.  

the magnetic f i e l d  f luc tua t ions  i n  the v i c i n i t y  of the reference point  represent 

a wave f i e l d  of MHD waves, the associated veloci ty  f luc tua t ions  can be estimated 

and compared t o  the thermal ve loc i t i e s .  It is found t h a t  these va r i a t ions  can 

be neglected. However, the p o s s i b i l i t y  remains t h a t  turbulent  wave f i e l d s  could 

play a r o l e  which do not have maQneticfield var ia t ions l i k e ,  f o r  instance,  ion 

acoust ical  wams. But a large e r r o r  caused by these waves i n  the temperature 

determination i n  the v i c i n i t y  of our reference point is  improbable because it 

appl ies  i n  the “magnetosheath“ i n  t h i s  example t h a t  T i ,  &/Te, M 1.5 which implies 

a strong at tenuat ion of ion acoust ical  waves [cf . ,  f o r  instance,  Fried and Gould, 

19611. 

For, i f  w e  assume t h a t  

An interplanetary shock wave was observed on October 7 ,  1962, with the a id  

of the Mariner 2 space probe [cf.  Sonett  e t  al . ,  19641. For t h i s  wave we obtain 

Since isotropy w a s  assumed f o r  t h i s  evaluat ion,  

and s ince  the  magnetic va r i a t ions  are known only with ppor t i m e  r e so lu t ion ,  the 
[ log ( T;,’fp <,i,t/n;,<$:- 0.25 
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X 

X 
uncertainty i n  t h i s  case is g r e a t e r  than 0.26, s o  t h a t  [ 1 > o,*  too,  

0 would be compatible with t h e  data.  

Moreover, in te rp lane tary  shock waves have been observed with t h e  a i d  of 

t h e  Vela satel l i tes  [Gosling e t  a l . ,  19681. 

20, 1966, which yielded a value of [log ( y f , T g  x,;,~/n;,~)]: + 0.53 . 
1965, a shock wave w a s  observed where 

it was s t i p u l a t e d  t h a t  isotropy applied.  The paper by Argo e t  a l .  C19671, which 

was mentioned above includes observations f o r  13 passes  through t h e  e a r t h ' s  

shock wave. 

values l i s t e d  i n  Table 1 of t h e  paper by Argo e t  a l .  

A shock wave w a s  observed on January L64 

On October 5 ,  

~ l o g ( 7 ; ~ , T , ~ , s / n , ) I ~ O . 5 0 .  Again, however, 

Table 3 lists t h e  values of [ l o g  (T,:,, z , i , f / ? z ; , g ) j x '  
a. 

f o r  t he  

TAl3LE 3 

2.8 
14.0 ( ? >  

2 -3  
6.8 
4.2 

3 .8  
2.3 
2.1 

3.1 
I .25 
2.2 
2.8 
6.8 

17 
16 

25 
50 
I O  

23 
36 
17 
27 
12 

36 
70 
I O  

+ 3.2 
+ 1.5 
+ 4.0 

+ 4.0 
+ 2.0 
+ 3.4 
+ 4.5 

+ 3.5 
+ 4.5 
+ 3.5 
+ 4.6 
+ 4.1 
+ 1.5 

- - -. -. . . - . 

* Space i n  brackets blank i n  o r ig ina l .  
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Again, the unce r t a in t i e s  i n  these measurements are greater than the un- 

c e r t a i n t i e s  i n  the Pioneer measurements. The temperature r a t i o  T1 , d T o ,  8 
was formed from mean values. Magnetic f i e l d  measurements which might indicate  

the presence of any highly in s t a t iona ry  processes a r e  not avai lable  f o r  the 

period when the plasma measurements were taken. However, the authors s t a t e  

t h a t  t he  measured values a r e  normally reproducible from one measuring cycle 

t o  the next and on both s i d e s  of the shock wave. These measurements confirm the 

r e s u l t s  of Pioneer 6 i n  s p i t e  of considerable uncertaint ies .  

/65 

Moreover, the f e w  measurements of the electron d i s t r i b u t i o n  functions con- 

f i r m  the  r e s u l t s  acquired from Pioneer 6. Although w e  are aware of the un- 

c e r t a i n t i e s  involved i n  the plasma measurements, we can draw some important 

conclusions. The large values of 

is - [a,72 a r e  incompatible with the  statement t h a t  t he  Vlasov equation f o r  f 

adequate t o  describe the physical processes taking place within the diock wave 

region ( 0 ,  Ls). 

region shows t h a t  the f luc tua t ing  f i e l d s  which a re  defined i n  the ensemble E. 

play an important r o l e  i n  defining the shock wave s t ruc tu re .  The e f f e c t  of the 

f luc tua t ion  f i e l d s  is best  described by a co r re l a t ion  term of the type t h a t  

occurs i n  the Balescu-Lenard equation and w a s  already mentioned above. This 

co r re l a t ion  t e r m  has its o r i g i n  i n  the d i sc re t e  nature of plasma matter. In  

its most simple form the  Balescu-Lenard equation 

X I  Y' 

[iog(7;,: x;$ / ~ 2 ~ , < ) ] % ~ =  - [ i L . l l x ,  and a l s o  

IJ. 9 %  

The nonvalidity of the Vlasov equation within the shock wave 

1 

t r e a t s  an homogeneous, s t a b l e  plasma of e lectrons and of an immobile ion 

background without magnetic f i e l d ,  allowing merely f o r  e l e c t r o s t a t i c  f luc -  

tuations.  In t h a t  case it can be shown, as  f o r  instance by [Montgomery and 

Tidman, 19641, t h a t  

The general izat ion of the term C t o  allow f o r  several  p a r t i c l e  types e ,  BL 
= 1, 2 ,  ... is found i n  Dupree's paper [I9611 and i n  the book by Montgomery 

and Tidman [1964]. Thus we obtain by analogy: 
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The relationship is usually called the H-theorem and represents a generali- 

zation of the entropy relationship dS/dt 2 0. Among other conditions, the 

H-theorem is satisfied by Boltzmann's collision term which, however, is not 

of interest in this connection. 

If we apply the generalization of the correlation term C to several 

particle types C in order to determine GE in Eqs. ( Z O ) ,  we obtain with 

x < x  

e, BL 

c1, BL 1 
1 0  

V, [ H] = - V, p 2 3 [ f o j  (G,; <,p / w p ~ ~  
r 

- c a  

as we can also see from the measurements cited above. Of course, the 

assumptions made to derive the Balescu-Lenard correlation term are much too 

stringent for our shock wave problem. We are concerned with an inhomogeneous 

plasma in the magnetic field which may even be instable at some points. More- 

over, the limitation to electrostatic fluctuations is certain to be too 

restrictive. Among other researchers, Eviatar C19671 has expanded the theory 

to include the case of an homogeneous plasma in a magnetic field with general 

fluctuations. Incorporation of inhomogeneity is still outstanding. However, 

it is physically meaningful to assume that the inequality (23) will retain - /67 
its validity even then. In that case, the inequality ( 2 3 )  will replace the 

entropy condition of shock wave theory in the isotropic, collision-dominated 

plasma. 

Another interesting characteristic of the Balescu-Lenard equation is that 

a Maxwellian distribution is obtained for t + m under any desired initial 

distribution function. In order to characterize these processes we can intro- 

duce the deflection period TD(x) which expresses the time required for the 

90" deflection of a test particle of initial velocity x. Tidman and Eviatar 

C19651 and Eviatar C1966, 19671 have shown that this period 7 (x) can be 
smaller by several orders of magnitude in the case of certain particle 

distributions than it would be in accordance with the relationships that apply 

D 
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to Coulombian collisions of pairs. One possibility of achieving this is the 

destabilization of the plasma. In that case, the waves excited by the test 

particles will be subject to less attenuation, and accordingly, the feedback 

effect of the wave field will be greater. If the boundary of indifferent 

equilibrium is exceeded and instability is reached, equations of the Balescu- 

Lenard type will become invalid. The processes described by these equations 

will continue to have an effect, but now it is necessary to allow for non- 

linear effects. In addition to reversible damping by the Landau mechanism 

and cyclotron damping, the fluctuation fields associated with the discrete 

nature of the plasma will cause an irreversible contribution to damping. 

Moreover, they contribute toward greater plasma isotropy. This emphasis on 

the effects of the discrete nature of the plasma, however, does not mean that 

the mechanisms described in Para. 2.3.1., above, will be of lesser signifi- 

cance. The final form of the particle distributions is affected just as 

decisively by the processes described by the Vlasov equation as the structure 

of the shock wave region. The magnetic field variations measured behind the 

shock wave of earth are the manifestation of processes which can be described 

in good approximation by the Vlasov equation. Now, what is the effect of these L68 
instationary processes on the final distribution function f of particle type 

I-L 
IL? 

It was mentioned before that an accurate answer to this question pre- 

supposes the availability of a theory on shock waves in a collision-free, 

anisotropic plasma. Any such theory would normally require the availability 

of a theory on strong plasma turbulence which is practically nonexistent. 

However, when we progress in the negative x-direction (cf. Figure 2 )  in the 

wave region behind the shock wave, the turbulence energy will decrease because 

of the absence of turbulence-generating processes. In that case, there may 

exist an area where the fairly well developed theory on weak turbulence can 

be used [Litvak, 1960; Kovrijnykh, 1964; Kadomtsev, 19651. This theory can 

be adequate everywhere in the case of weak shock waves, as shown by the shock 

wave model of Litvak C19601, Fishman et al. C19601, and Camac et al. C19621. 

The theory of weak plasma turbulence regards wave packets (plasmons) under 

the aspect of the particle-wave and wave-wave interactions and under the 
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aspect of propagation e f f e c t s .  Necessary cr i ter ia  f o r  t he  weakness of t he  

turbulence include weak imaginary components I k .  I < kr of t he  wave number 

k = k + i k  and free wavelengths 1 f o r  the wave c o l l i s i o n s  t h a t  are g rea t e r  

than seve ra l  t yp ica l  wavelengths 2T/k. Moreover, t he  effect of t he  d i s c r e t e  

nature  of t he  plasma can be taken i n t o  consideration. As w e  progress i n  the 

negative x-direction, the free path length f o r  wave c o l l i s i o n s ,  1, w i l l  con- 

t i nue  t o  increase with the r e s u l t  t h a t ,  f i n a l l y ,  t he  wave c o l l i s i o n s  can be 

disregarded. In t h a t  case, we e n t e r  an area where the  quas i l i nea r  theory 

becomes applicable.  The waves no longer have any d i r e c t  interact ion.  They 

merely cause ve loc i ty  space diffusion and consequently, changes i n  the 

d i s t r i b u t i o n  functions t h a t  have a feedback e f f e c t  on the waves v i a  the d i s -  

persion r e l a t ions .  

1 

r i' 

The shock wave theories  of Para. 2.3.1. provide no statement on L69 
the f i n a l  d i s t r i b u t i o n  funct ions,  or only vague statements. Therefore, w e  

s h a l l  consider as an example the advanced development of t he  shock wave model 

by Litvak [1960], Fishman e t  a l .  [1960], and C a m a c  e t  al. [1962] (cf .  Para. 

2.3.1.). 

f i gu ra t ion  space and i n  the  wave vector space,  k, and s t i p u l a t i n g  weak 

turbulence,  the wave t ransport  equation [Camac e t  a l . ,  19621 w i l l  be appl i -  

cable 

Using the "number" of plasmons, x, per  u n i t  of volume kn the con- - 

where v = aw/ak is the group veloci ty  component i n  the x-direct ion,  com- 

pared t o  the plasma a t  rest. 

steady-state system of plasma Bi .  

damping t e r m .  It is s t i p u l a t e d  t h a t ,  a t  t he  s t a r t  of the wave region, the 

wave c o l l i s i o n s  s h a l l  be predominant and s h a l l  determine the .form of the 

function x. 
neglected,  the generally applicable s teady-state  so lu t ion  f o r  the wave 

= 0 reads c o l l i s i o n  t e r m  

9 X 

uk is the c i r c u l a r  frequency, measured i n  the 

The equation has been expanded by the 

According t o  the paper by Litvak E19601 i n  which damping is 
- 

(2 )ave  co l l .  
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where A and %are constants. Now we could obtain a more accurate solution for 

after linearization of the collision term by means of a perturbation 

calculation about the equilibrium function, similar to the Chapman-Enskog 

method for gases, where a development about the local Maxwellian distribution 

is mads. In the case of strong wave collisions, we can consider the above 

“k, 

formula to be a good approximation. Since the plasmons originating from L70 
whistler wave packets which are under consideration here, are strongly 

attenuated below a wavelength of r /wpe, the theory will no longer apply e 
in that region. On the other hand, however, this is an interesting area be- 

cause plasmons can be moved toward high &values as a result of wave 

collisions, and can be strongly attenuated there. Now, if we consider 

x- = A/% - c - k_, we will find for k, - g> 0 that ?.,> n-&. 

waves with 

that more waves are moved by collisions into the area of strong attenuation 

where k, . & >  0 and k > 2r/re. 
of volume d z  and ak- is given by 

lose impulse in the direction &. 

C = 

Consequently , - - &>  0 are more frequent. We can conclude from this statement 

Since the impulse of the plasmons per unit 

- &, the wave field where k < 2T/re will 
“k_ 
However, in order for the distribution % 

within k = 2T/r e to correspond approximately to the form % = A / % - & ‘  k, 
it must apply that & +  0. 
from the shock wave. In the case of the &space, this is a distribution which 

is symmetrical with respect to the zero point. Moreover, according to the 

description of this shock wave model provided in [Camac et al., 19621, part 

of the energy of the fast, clockwise-polarized plasmons is lost through 

transformation into slow, counterclockwise-polarized plasmons. 

Consequently, x - l/t- should apply at some distance - 

When the turbulence becomes weaker, the attenuation effects and propaga- 

tion effects begin to predominate, and highly damped plasmons are suppressed. 

Finally, the following equation applies: 

where have used dux/dxa 0. Moreover, if we take into consideration that waves 



whose propagation is oriented at an angle to the magnetic field are subject 

to greater attenuation than waves propagating parallel to the magnetic field, L7l 
and 

we will find for the dominant plasmons that 

that 8, = 8 = 90" applies to the shock wave model under consideration, 1 
3% I 4 lud and hence that 

It applies especially in the steady-state 

formation of B + BR that 

plasma system B after trans- R 

This means that, in the steady-state plasma system BR, the quasilinear 

theory of an homogeneous medium can be used that is subject only to time 

variation; such a theory is fairly well developed. Where the path transfor- 

mation of the term with a /ax is impossible, the quasilinear theory of in- 
homogeneous media would have to be used which is still poorly developed [cf., 

for instance, Tidman, 1967 a]. 

x, 

What is the direction of change of the distribution function in the quasi- 

linear region? 

growing waves ( y  

case for t -+ and for all waves that y = 0. The incorporation of negative 

values of y which are of special interest to us, will yield y 0 in the 

asymptotic case. The authors themselves state that the asymptotic case is 

relatively uninteresting since the periods during which natural processes 

take place are limited. Yet, the result obtained by Kennel and Engelmann is 

important because it indicates the direction in which the distribution functions 

change. In our case, we are interested only in processes that are completed 

Kennel and Engelmann [I9661 studied the quasilinear theory of 

> 0) with the result that it must apply in the asymptotic k 
k, 

k, k 

L72 
within periods Ls/ 4 L/ . I 11 I 11 

Secondary maxima in the presence of small helical angles in a tail of 

distribution f are rapidly reduced as a result of electrostatic electron 

oscillations. Moreover, in our case where ŝ  4 1, the resonance interactions 

of the waves considered above are of interest which were described, for instance, 

e 

0 
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by Kennel and Petschek [1966]; these will prevent any strong anisotropy. Un- 

fortunately, the energies of the interactions under consideration here are 

located far above the thermal energy of the plasma so that it could still be 

anisotropic. With these relatively weak isotropization mechanisms, we shall 

conclude the expanding discussion of the shock wave model of Litvak, Fishman 

et al,, and Camac, which serves as an example for similar considerations. 

Another type of instability which is interesting for the case where 

s  ̂ > 5/6, is the so-called "firehose" instability, This is encountered where 

P,, - PL > K / h .  
will stabilize itself, ensuring that P,, - P1 5 E /&IT , which would be ex- 
pected after our statements above. 

2 0 
According to Shapiro and Shevchenko C19641, this instability 

2 

Reflection instability imposes somewhat more stringent requirements on a 

stable distribution function. This instability depends not only on the total 

pressures but also on the ratios of the pressure contributions of the different 

particle types to Pl and P,I . In the most favorable case, instability results 

only where PL - P,, > (5, /PL) - E2/8 n . 
under any value of ŝ  
large values of ŝ  

Consequently, instability can occur 

However, instability becomes interesting only for 
2 0' 

if PL - P,, > E /8n is considered the instability criterion. 
0' 

However, the two last-named instabilities do not limit the anisotropy to 

a sufficient degree. For the effect of the remaining anisotropy behind the 

shock wave on the step functions which we must still derive has approximately 

the same magnitude as the effect of the inaccurate information on the pressure 

tensor behind the shock wave, if only the two above-named instabilities are 

available to limit the anisotropy. 

L73 

We now come to the question as to the circumstances under which the iso- 

tropization processes are not adequate. Based on the foregoing, the 

fluctuations 6% and 6K in the ensemble E play a large role in the isotropi- 

zation of the plasma. The instationary processes which are incorporatsd in 

the ensemble means of E are important to the strength of these fluctuation 

fields because they yield the highly asymmetrical distribution functions. 

Moreover, the fluctuation fields @and 6K in the ensemble el cause a change 
in H which is CHI 0. If the contributions of the ions and electrons to [ H I  

1 

1 
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disappear,  meaning t h a t  both have an tladiabatictt behavior, then we cannot 

expect any i so t rop iza t ion  t o  the degree t h a t  would be encountered with a large 

value of 1 CHl1.  

A t  the  end of t h i s  chapter ,  w e  s h a l l  discuss b r i e f l y  two o the r  addi t ional  

s t i p u l a t i o n s  which have been proposed f o r  the invest igat ion of t he  jump 

r e l a t i o n s  of shock waves i n  an anisotropic  plasma [Abraham-Shrauner, 1967, a ,  

b; Lynn, 19671. Both of these authors discuss the case where < 1 i n  the 

presence of s t rong magnetic f i e lds .  
0 

Abraham-Shrauner [1967, a ,  b] s t a r t e d  out from the  Chew-Goldberger-Low 

equations. Using the r e l a t ionsh ips  

and 

which a re  applicable only f o r  a magnetic f i e l d  of constant d i r ec t ion  i n  the 

absence of any s p a t i a l  va r i a t ions  i n  the magnetic f i e l d  d i r ec t ion  and other- 

w i s e  only under the s t i p u l a t i o n  t h a t  the heat conduction vector  is absent,  

she derived two energy conservation equations f o r  an energy component which 

is p a r a l l e l  t o  L a n d  f o r  a component v e r t i c a l  t o  E. Again, the der ivat ion 

of these relat ionships  can be ve r i f i ed  only under the  s t i p u l a t i o n  t h a t  the 

magnetic f i e l d  has a constant direct ion.  However, l e t  u s  assume t h a t  these 

relat ionships  a r e  correct .  In  t h a t  case w e  w i l l  obtain,  using the index i 

f o r  ion: 

L74 

2 W . = L  . 
11, c p, uu,i +. t,, 
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and 

Integration over x will yield the two conservation equations (1) and (2) L75 
in the paper by Abraham-Shrauner [1967, b]. However, these Eqs. (1) and (2) 

are not equivalent to the Eqs. (26a) and (26b). We could have summated terms 

of the form div 2 in Eqs. 
- L disappear when a/ax = a/ay 

Eqs. (1) and (2). But this also means that the validity of (1) and (2) in 

Abraham-Shrauner's paper does not include the validity of the Eqs. (25). For 

instance, let us discuss the case of a shock wave with 8, = 90" on the basis 
of Abraham-Shrauner's equations. Using Eqs. (1) through (6) of Abraham- 

Shrauner, we will obtain 

(26a) and (26b), where it is merely necessary that 

0 8/32 = 0, and nothing would have changed in 

Due to [ H  / o . ]  = 0, this expression would have to yield a continuous 
Y 1  

result of one in order to be compatible with Eq. (25a), that is ;e (fL,dp.lH/) c -- ;@ 

But this expression is equal to one only where 7 
however, Eqs. (25a) and (25b) represent the starting point for Eqs. (26a) and 

(26b) which are equivalent to the Eqs. (16) and (17) by Abraham-Shrauner [1967]. 

Consequently, this derivation is contradictory. 

= 0. On the other hand, i 

This is a different situation as that encountered with a similar llproblem" 

involved in the formulation of the conservation equations for shock waves in 

gas dynamics. For, in the case of the latter, if we use the generally appli- L76 
cable equation of mass conservation, ap/at + div(D2) = 0, the equations of 
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motion, and the energy conservation equation without dissipation terms 

(friction and heat conduction), we will obtain, after the customary inte- 

gration over x, the correct conservation equations of the form [ ] = 0 for 

the shock wave, and these equations will also yield the correct expressions 

for the jumps in the different magnitudes. Moreover, except for [ o ]  = 0 these 

jumps will yield entropy changes that are incompatible with the absence of the 

dissipation terms. Again, the reason for this is that none of the dissipation 

terms will yield a quantity upon integration, so that the same conservation 

equations are obtained with and without dissipation terms. And this result 

must be expected because the relationships used there are expressions of gener- 

ally valid physical principles such as the conservation of mass, conservation 

of impulse, and conservation of energy, while the two separate energy con- 

servation equations by Abraham-Shrauner require very specific prerequisites: 

namely Eqs. (25). 

Instabilities of the type described by the Chew-Goldberger-Low equations 

in the form described by Abraham-Shrauner [1967, a] will not be helpful here. 

The CGL equations can be expanded by allowing for smaller time scales 7 5 2n/m 

In that case, Eqs. (25a) and (25b) will no longer apply even in the case where 

8, = 90". Summarizing these considerations we conclude as follows: either the 

Eqs. (25a) and (25b) are correct with the result that very stringenc conditions 

apply which practically allow only transitions with 

ci 

Or the Eqs. (25a) and (25b) do not apply within the shock wave region. In L77 
that case, the Eqs. (1) and (2) by Abraham-Shrauner [1967, b] are unjustified 

ad-hoc stipulations. As we mentioned before, the conservation equations by 

Abraham-Shrauner [1967, b] contain only ionic magnitudes. NOW, we subtract 

from the vector conservation Eq. (12) the corresponding equation by Abraham- 

Shrauner [1967, b] that contains only ionic magnitudes, and we obtain 
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where e denotes the e l ec t ron ic  magnitudes. Moreover, w e  exploited the c i r -  

cumstance t h a t  n must apply outside the shock wave region. 

If w e  consider the x-component of Eq. (26c) and compare it with the measure- 

ments by Wolfe e t  a l .  C19681, w e  w i l l  obtain the following numerical values:  

= n and V+ = V e i -e 

and 

Moreover, the observation by Olbert e t  al. [19671 w i l l  y i e ld  the  s a m e  order 

of magnitude f o r  [P 

C1.9671 confirm the order of magnitude of [ m  n V 1. Consequently, Eq. ( 2 6 ~ )  

is not s a t i s f i e d  even i n  approximation. Since it appl ies  for the  measurements 

by Wolfe e t  a1 [19681 t h a t  g o %  3 ,  the discrepancy can be due t o  the f a c t ,  of 

course, t h a t  go < 1 is not s a t i s f i e d .  

Eq. ( 2 6 ~ )  w i l l  merely permit the statement t h a t  the theory by Abraham-Shrauner 

is val id  a t  best  within one spherical  s h e l l  about the sun which is f a r  inside 

the e a r t h  o rb i t .  The inner radius of t h i s  sphe r i ca l  s h e l l  is determined by 

the increasing s ignif icance of c o l l i s i o n s  with decreasing dis tance from the  

sun. 

I ,  while the t r a n s i t i o n s  investigated by Argo e t  a l .  L78 
2 

e n  

xx, e 

In any event,  arguing on the basis  of 

Since Eq. (26c) is a l s o  obtained through subtract ion of the conservation 

equation derived from Eq. ( l b )  of Lynn C19671 from our Eq. [12], the argument 

s t a t e d  above w i l l  apply i n  t h a t  case,  too. Lynn C1.9671 s t a r t e d  out from 

equations containing ionic  magnitudes and especial ly  the ionic  pressures. The 

r e s u l t  was the same as our Eqs. ( l l ) ,  (121, (131, (14 ) ,  (151, and (171, where 

our magnitudes a r e  replaced by the corresponding ion ic  magnitudes. He used 

the addi t ional  assumptions t h a t  [q 3 = 0, and t h a t  n 

Neither the observations by Wolfe e t  a l .  [19681 and by Ness e t  al.[1966], 

nor those of Sonett  e t  al.[1964] w i l l  confirm t h i s  formula, although t h i s  can 

be due again t o  the f a c t  t h a t  Go 1 is not s a t i s f i e d .  
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According to Lynn [1967], Eq. (26d) follows from the conservation of the 

first adiabatic invariant 

for each individual particle. The conservation of p requires that the time L79 
scales of the field changes in the steady-state system of the particle in 

question be greater than the gyro period. If we consider the time scales in 

the models described in Section 2.3. for the structure of collisionless shock 

waves where ŝ  
permissible. "Whistler" waves having wavelengths between r and r .  are pre- 

dominant in the shock wave model by Fishman et al. [19601 which applies to 

shock wave velocities up to V 

ad 

< 1, the time scales will be found to be much smaller than 
0 

e 

at an Alfvgn velocity of n, 0 -  'A, o 
'A,o = /fT . The associated frequencies in the steady-state system 

of particles are in most instances greater than f the ion gyro frequency. 

Moreover, the computer models by Auer et al. [19621 and Rossow [1965; 19671 

which, however, are one-dimensional, reflect time scales for large-amplitude 

fluctuations that are located far below the gyro period of the ions with 

2n/fCi. 

justified. 

ci' 

These papers permit the conclusion that assumption 26d is not 

Finally, a large part of the states in the rear of the shock wave which 

are obtained with the aid of the jump functions by Lynn [19671, are unstable. 

For instance, where Bo = 90" and s  ̂ < 1 it follows from Lynn's equations that 
in the case of I H I q H  1 %  4.4 the plasma behind the shock wave is unstable with 

respect to fire hose instability when there is isotropy in front of the shock 

wave. This instability will start even earlier when there is positive 

anisotropy on the front side. Electron pressure was neglected in this 

stability consideration. More precise investigation, however, will show that 

electron anisotropy will even increase the instability. Even in the case 

where 8 = go", a large part of the resulting plasma states in the rear of the 
shock wave will be unstable. 

0 

-1 -0 

0 

It is seen from this section that the stipulation of plasma isotropy behind 

the shock wave is meaningful when the shock wave is sufficiently strong, 

although precise theoretical justification will be difficult. The assumptions 

made by Abraham-Shrauner and Lynn, however, will encounter difficulties. One L80 
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important result acquired during the investigation of measured data from 

satellites and space probes is the statement that, in the case of collision- 

free shock waves, correlations between particles can be neglected in the regions 

located in front of the shock wave region and behind it, but not within the 

shock wave region itself. The Vlasov equation will provide a good description 

for many aspects. 

2.5. The Jump Relations for Contact Discontinuities La1 
and Shock Waves in an-Anisotropic Plasma 

Jump relations are defined as formulas which, for given values of p ,  E, H - 
on the one side of a transition state the physical magnitudes prevailing on the 

other side of that transition as functions of a parameter which describes the 

strength of the transition. Wherever possible we shall adapt the denotations 

and classification types of the results obtained from Eqs. (111, (12), (131, 

(14), (15), and (17), and the additional assumptions to the paper by Bazer 

and Ericson [1958], in order to simplify the comparison. Consequently, we 

shall define transitions with V = 0 as contact discontinuities and shall in- 

clude them in the discussion for completeness. By definition, shock waves are 

transitions where V f 0. The subdivision of shock waves into waves with and 

without density change, which was made by Bazer and Ericson [19581, is not 

advantageous here. We shall show in Para. 2.5.2. that a distinction between 

collinear shock waves and non-collinear shock waves is advantageous. 

we shall also designate as rotational discontinuities. 

n. 

n 

The latter 

Before we start, we shall also define the transverse part Q of a vector t r  
- Q with the aid of the vector in Figure 2; 

Moreover, let us reiterate that we shall not make any statement on the 

stability of the transitions to be obtained below. 

2.5.1. Contact Discontinuities 

There will not be any mass flow M = g V  through the discontinuity because 

of V = n (here we define discontinuity in the sense of L < L). In general, n s 
we assume anisotropic plasma states on both sides of the transition. In 

n 
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that case, we can make a distinction between two cases: 

H, f 0. ------- 
It follows from Eq. (14) that H, is equal on both sides of the transition. 

Eq. (15) yields [ I 1  = 0 or [V 

equal on both sides. The normal component of Eq. (12) yields 

3 = 0. Consequently, the velocity vectors are --tr 

Using Eq. (17a), it follows from the transverse component of Eq. (12) that 

Consequently, in the case of an isotropic plasma we have [H+r] = 0. 

anisotropic case within the stability boundary toward fire hose instability, 

it applies that H tr 11 Htr . 
where &, 11, %, €il are Pocated in one plane which is oriented perpendicularly 
to the y, z-plane. Finally, Eq. (13) yields 

In the 

Therefore, we can always find a reference system 
1 

Additional equations are not obtained. Let us summarize these relation- 

c V I - 0  ships : 

L83 
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Only the  f i r s t  and second ve loc i ty  moments, v, P and PL occur as plasma I! 
magnitudes. This means t h a t  [ p ]  can be se l ec t ed  a t  random. 

Inequality (23) is s a t i s f i e d  automatically f o r  d i s t r i b u t i o n  functions 

which are point-symmetrical t o  

V = 0. Moreover, it w i l l  apply t h a t  q = 0. In  the case of other  than point-  

symmetrical funct ions,  

on both s ides  within the E-space, s ince  

n n 

must be s a t i s f i e d .  The equa l i ty  s i g n  w i l l  apply when the Vlasov equation is 

a l s o  s u f f i c i e n t  within the t r a n s i t i o n  region. 

Subsequently, because of 8 = 0 = go", the normal component of Eq. (12) 
0 1  

together with (17a) w i l l  y i e ld  

The transverse components of Eq. (12) a r e  s a t i s f i e d  automatically. 

[L] = 0 is a random magnitude because of Eq. 

is obtained from Eq. (13) because of Eq. ( 1 7 ~ ) .  When the Vlasov equation 

app l i e s ,  Eq. (20) w i l l  always be s a t i s f i e d  because of Eq. (16). 

(15). N o  addi t ional  r e l a t ionsh ip  

Consequently, the s t a t e s  on both s ides  of the contact discont inui ty  where 

H = 0, a so-called t angen t i a l  d i scon t inu i ty ,  a r e  a r b i t r a r y  except for sa t i s fy ing  

the Eq. (28). 
n 

2.5.2. The Co l l inea r i ty  Theorem a s e n e r a l i z e d  
Alfven Shock Waves 

Now we s h a l l  i nves t iga t e  q u i t e  generally the nature of the changes i n  the 

plane formed by the vectors n a n d  Kdur ing  the t r a n s i t i o n  from one s i d e  t o  the 

other  of any random shock wave or contact  discontinuity.  W e  s h a l l  s t i p u l a t e  

t h a t  anisotropy is allowed on both s ides .  Since [H 1 = 0 and [MI = 0 ,  w e  can 

use the transverse p a r t  of Eq. (15) t o  eliminate V i n  the t ransverse p a r t  

of Eq. (12) by a simple rout ine:  

n 

t r  
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Using Eq. (17a), we can express in vector terms as follows: - 

where 

c o s  e = g * 

Consequently, 

L85 

When the round bracket on both sides of the shock wave is different from 

zero, the result will be that sr and H are parallel or antiparallel. But 

when will one of these round brackets disappear? We state 
1 +O 

2 MV, - H: /4T + (Pa - PA) c o s  Q = 0 and solve with respect to V using M = D V  n . n' 
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I 

In that case we obtain 

1111 I I  

or 

where VA is the Alfven velocity defined above. is the phase velocity of the 

well known generalization of the Alfvgn wave solution applied to an anisotropic 

plasma for propagation in the direction, that is, in a direction enclosing 

the angle 0 with the magnetic field [cf., €or instance, Barnes, 19671. The 

instability of this wave for P,, - P,> H /4T is the well known fire hose in- 

stability. In the case of stability toward this instability, the radicand in 

1; will be negative. We shall exclude this case from the outset. Different 

cases will result when we evaluate Eq. (30). We shall summarize the results 

of this evaluation. First, we shall formulate the collinearity theorem: 

6 n 

2 

n 
L87 

In the case where V and V f gn, 1, the transverse part of n, 0 f ’n, 0 n, 
the magnetic field on the front side of a shock wave is collinear with the 

transverse part of the magnetic field in the rear, meaning that the magnetic 

field vectors H and H as well as the normal vector E are located in the same 

plane. 
-0 -1 

We designate shock waves that are subject to collinearity as collinear 

shock waves. 
- 

are designated AlfvGn n, 1 f ’n, 1 and V n, 0 f bn, 0 
Shock waves with V 

shock waves for obvious reasons. It is seen from Eq. 30 that these shock waves 

can be subject to random rotational angles between H and H . Therefore, 
+O +l 

we call them rotational discontinuities when the noncollinear case applies. 

Now, are the other conservation equations satisfied in the case of Alfvgn 

shock waves? Because of V #! 0 and H f 0, we can continue to define the ref- 

erence system in which the shock wave rests, without loss of generality, by 

demanding that E = 0. This was already mentioned at the end of Para. 2.2.2. 

In that case, V x H = 0 will apply on both sides of the shock wave. It is 

especially easy to see in this reference system B that the remaining equations 

n n 

t r  

0 
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I1 Ill IIIIII I I 

do not fu rn i sh  any add i t iona l  statement on the  angle between H and H . 
'trO +l 

Consequently, with f ixed  €I and H w e  can r o t a t e  the vector H a t  random 
+-l trl 1 

a g a i n s t  H without v io l a t ing  the  conservation equations,  provided t h a t  they 

w e r e  s a t i s f i e d  a t  t he  outset .  In p a r t i c u l a r ,  we can a l s o  r o t a t e  H i n t o  the  

plane formed by n a n d  H 

+O 

1 
t r  

so  t h a t  the shock wave becomes co l l i nea r .  
-0 

In the case of isotropy,  w e  f i n d  the following f o r  the Alfvgrn shock waves L88 
because of Eq. (11) : 

Vn., - P o  - H, fir7 
vn,o Pf Hn 

and hence t h a t  p0 = p1 o r  [ p ]  = 0. 

where [ o ]  = 0 f o r  A l f &  shock waves i n  an anisotropic  plasma. 

w e  obtain [V 1 = 0, and hence because of V 

Since,  once again,  w e  do not have enough equations,  w e  s h a l l  make the addi t ional  
2 

s t i p u l a t i o n s  t h a t  [q 1 = 0 and [H+r] = 0. n 
of Eq. (12) w i l l  y i e l d  [PL] = 0, and the above r e l a t ionsh ip  w i l l  y i e l d  [P,,] = 0. 

Consequently, w e  are dealing with an Alfven shock wave t h a t  has the following 

characteristics : 

Let us  b r i e f l y  s tudy the s p e c i a l  case 

From [ p ]  = 0 

= 6, the  r e l a t ionsh ip  [ (P,,-PL)/d]= 0.  
n n Y K  

In t h a t  case, the normal component 

* 

In general ,  t h e  expression (PH - P1) / E H2 can change during the  t r ans i t i on .  

and consequently, [ p ]  f 0. Generally , 0 f 'n, 1' In  t h a t  case w e  obtain Vn 

speaking, Eq. (12) w i l l  y i e l d  the following f o r  a l l  Alfvgn shock waves: 
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O f  course,  i n  every instance the inequal i ty  (23) o r  the general ly  appl i -  

cable r e l a t ionsh ip  [ F  f ,  'Us (03 1, d y ]  2 0 m u s t  be s a t i s f i e d ,  too. 

Now, we s h a l l  assume t h a t  isotropy prevai ls  behind the shock wave region. L89 

In t h a t  case,  it w i l l  follow from Eqs.(l l)  and (31) t h a t  

Consequently, 

and 

Using the nomenclature of Para. 2.5.3., and the de f in i t i ons  

5 P" - 71 
3 e0=/4r A S =  - - P. - P o  

2= p. 
t h i s  w i l l  correspond t o  

- 3 z = - -  A S  
5 (31b) 

Inversely,  Eq. (3 lb )  i n  i t s e l f  is only a necessary condition f o r  a shock 

wave (V 

t o  t h i s  the condition [ q r l  = [u 

necessary set of conditions t o  determine t h a t  a shock wave having i so t rop ic  

pressure i n  its r e a r  is i n  f a c t  an Alfvgn shock wave. This can be shown by 

means of Eqs. (12) and (15).  Based on the statement made a t  the ou t se t  of the 

discussion of Alfven shock waves, the jump functions f o r  c o l l i n e a r  shock 

waves can be used t o  ca l cu la t e  other  i n t e re s t ing  magnitudes of Alfven shock 

waves. 

f 0 )  with isotropy i n  its r e a r  t o  be an Alfvgn shock wave. I f  we add L90 n 
1 f 0, w e  w i l l  acquire a s u f f i c i e n t  and t r  

# 

A t  the end of t h i s  s e c t i o n  w e  s h a l l  list two important boufidary cases t h a t  

a r e  of i n t e r e s t  i n  conjunction with Eq. (30). In the case where H - 0 and 
- t r , O -  

H = 6 1, according 

t o  Eq. ( 3 0 ) .  These shock waves are ca l l ed  switch-on shocks because a t rans-  

verse magnetic f i e l d  is switched on upon passage through the shock wave region. 

f 0, it m u s t  apply behind the shock wave t h a t  V 
ti-, 1 n ,  1 n ,  
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Accordingly, it must apply i n  the case of H 

'n,O = 'n,0. 

f 0 and H = 0 t h a t  t r  ,O t r , l  
We designate t h i s  type of shock waves as switch-off shocks. 

2.5.3. Collinear Shgck Waves 

W e  s h a l l  now discuss shock waves i n  which the  i so t rop iza t ion  processes i n  

the  shock wave region (0, L a r e  s u f f i c i e n t l y  s t rong t o  achieve isotropy i n  

t he  r ea r  of the shock wave. Moreover, we s h a l l  consider c o l l i n e a r  shock 

waves exclusively. On the f r o n t  s i d e ,  we s h a l l  merely s t i p u l a t e  t h a t  q = 0. 

Generalization t o  include t h e  case where q f - 0  is e a s i l y  accomplished. 

Subsequently, w e  assume on the  f r o n t  s i d e  of t he  shock wave the densi ty  0 

the  angle Bo, the pressure tensor  P 

f i e l d  q. 
H as shown i n  Figure 2 w i l l  be located i n  the x ,  y-plane, too. W e  use 
-1 
h = H - H / l H  I i n  order t o  character ize  t h e  shock wave t r a n s i t i a n .  

This means t h a t ,  i n  t he  case where h > 0, w e  have a magnetic f i e l d  increase 

during the shock wave passage, s ince it appl ies  (by d e f i n i t i o n )  t h a t  H 2 0. LSl 

In the  case where - s i n  8, s h 

I I31 w i l l  not continue t o  grow. 

- 2 s i n  eo < h 

again corresponds t o  a magnetic f i e l d  increase with H < 0. 

S 

n,o 
n,O 

0' 
according t o  Eq. (17a), and t h e  magnetic a' 

A s  a r e s u l t  of the  c o l l i n e a r i t y  of t he  t ransverse m g n e t i c  f i e l d s ,  

Y , l  Y,O -0 ' 

Y 30 
0, it w i l l  a l s o  apply t h a t  H 2 0 ,  however, 

Y , l  
Nor w i l l  5 grow'in the  area where 

0 - s i n  8 However, it w i l l  apply t h a t  H g 0. h < -2 s i n  8 
0' Y , l  

Y , l  

Using the magnitudes defined above, w e  can ca l cu la t e  a l l  other  physical 

magnltudes t h a t  are of i n t e r e s t  f o r  the shock wave; these a r e  0 V V 
1' n,O' n ,  1' 

P 

H W e  s t a t e d  t h a t  [V 1 = [u ] e t c . ,  i n  order t o  express t h a t  the differences 

can be calculated,  of course,  i n  any reference system. W e  use the magnitudes 

n, si, Y, 7 to express the  r e s u l t s .  

again i n  the  following system of defining equations: 

= P = P1, cv 1 = cu 1, LVn1 = C U n l ,  -CHI  7 and i n  a t r i v i a l  manner, 
11% I 1, Y Y 

-1 - Y Y 

A l l  the  important parameters a r e  summarized 
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Now we s h a l l  compile a l l  the  important re la t ionships  i n  the  reference 

system Bo, using the  coordinate system KO, i n  accordance with E q s .  ( l l ) ,  (12) ,  

(131, (141 ,  (151, (17) and (23):  

p. v,*.= p. K,, 
(33a) 
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The inequal i ty  V 2 0 i n  Figure 2 involves no lo s s  of general i ty .  It is 
n 

seen from the equation system (33)that  eo can be l imited t o  0 5 0 0 5 90" without 

any s i g n i f i c a n t  l o s s  of general i ty .  
- 

Now, w e  can use  the given magnitudes t o  c a l c u l a t e ,  f o r  instance,  7 .  
For t h i s  purpose, we s t a r t  out by eliminating V 

Subsequently, we el iminate  P 

'n, 1"n ' 0  

and V by means of Eq.(33d). 
Y ( 0  Y , l  

and f i n a l l y ,  w e  use Eq. (33a) t o  eliminate 
1' . After some ca l cu la t ion ,  w e  obtain 

- 
When we selected the denotations and d e f i n i t i o n s ,  w e  assumed t h a t  and 

h should not be defined d i f f e r e n t l y  than i n  the paper by Bazer and Ericson 

[1958]. 
- - 
so,  so, and ŝ  w e r e  se lected s o  t h a t  i n  the case where As = 0, 

- - A 
0 - - 

0 merge i n t o  s as defined by Bazer and Ericson. Moreover, s so = so = so 0 
w a s  s o  selected t h a t  Eq. (34) w i l l  deviate as l i t t l e  as possible from its form 

i n  the case of As = 0. 
- 

Solution with respect  t o  7 w i l l  y i e ld  the following from Eq. (34):  
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where 

Now, we s h a l l  ca l cu la t e  the other  jump re lat ions.  Using Eqs. (33a) through 

(33d) ,  we obtain 

Moreover, 

We selected b instead of 6 as  reference v e l o c i t i e s  i n  Eqs. (37)  through 
n n 

(39) i n  order t o  have a reference veloci ty  which is independent of anisotropy. 

This w i l l  f a c i l i t a t e  discussion of the e f f e c t  of anisotropy on t h e  v e l o c i t i e s  

and veloci ty  jumps. 
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3 .  Discussion of-the- Jump Relations of Collinear 
Shock Waves in an Anisotropic Pla-sfla 

3.1. Introduction 

-~ 

L96 

The following chapter is devoted to the jump functions for collinear 

shock waves. We shall confine ourselves to plasma states on the front side 

of the shock wave which are stable against fire hose instability and reflected 

instability in their most unfavorable case. This means that a permissible 

region is defined in the As, -plane. This region is defined by the condi- 

tions PI,  - PA 5 %/4" according to the stability criterion for fire hose 

instability, P1 - P,, s(P,, / Q )  %/8" for reflected instability, and 

PL 2 0, P,/ 2 0. The boundaries are mildly dependent on 0 since depends 

slightly on €Io. 

originate from the zero point. The boundary curves for As < 0 correspond to 
the reflection instability boundary. The solid straight lines at As > 0 which 
are numbered by different angles, correspond to the relationship PA = 0. When 

the point As = 5 / 3  is reached, the boundary line makes a bend and merges into 
the straight line that defines the instability boundary of fire hose instability. 

The additional requirement of quasistability toward other types of plasma 

instability requires special treatment.and shall be neglected here. 

0 
2 

2 

- 
0' 0 

They are represented by solid lines in Figure 6 which 

Now, we must still define the solutions which we wish to consider per- 

missible. Comparable to the definition used in the paper by Bazer and 

Ericson [ 1 9 5 8 ] ,  we can start out with the requirement that the plasma state 

in the rear of the shock wave has a steady-state dependence on the state pre- 

vailing in front of the shock wave and on a strength parameter. In the case 

of the Alfvgn shock waves this requirement will lead to difficulties since 

the rotational angle between H and H is entirely random. 
+O -1 
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6. Boundary lines of the different shock 
wave types according to Section 3 . 3  within the 
limits defined by the fire hose instability, 
reflection instability, and P 2 0. The curve 
parameter is 8 

1 
0’ 

The entropy condition is the second condition for shock waves that are L98 

dominated by collisions so that they have Maxwellian distributions on both 

sides, with equal temperatures for all particle types. The entropy change 
can be calculated precisely from the pressure and density prevailing on both 

sides of the shock wave so that an accurate answer to the permissibility 

question is possible. In our case, it is not possible to state any relation- 

ship which is as strictly defined as the classical entropy condition. After 
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all, theinequalities (339) and (23) had been derived from Eq. (20) under very 

specific conditions that were of interest according to the observations made. 

In order to characterize the thermal motions we had stipulated (isotropic) 

Maxwellian distributions in the rear of the shock wave, and anisotropic 

Maxwellian distributions in front. Now, if we maintain only the isotropy in 

the rear of the shock wave and the stipulation that q = 0 in front, the 

Vlasov equation under known PA, P,,, po and P 

number of different distribution functions that are quasistable in themselves 

and all of which yield different values of according 

to Eq.(20). Consequently, PA, Pi , ,  po, P1, o1 alone will not be sufficient to 
decide whether the inequality [ 5 1 i p  vx YO? f r  d v 7  2 0 is satisfied. On 

the other hand, the discussion of the arguments in favor of isotropy has shown 

that (isotropic) Maxwellian distributions are probable in the rear of the 

shock wave. However, the question as to the partial pressures of the individual 

particle types remains open. If we assume anisotropic Maxwellian distribu- 

tions on the front side we will obtain inequations (23) and (33s). A s  far as 

the solar wind relationships are concerned that correspond to the earth's 

shock wave, it is a natural assumption, based on the observation acquired from 

Pioneer 6 that was cited in Section 2.4, that the electrons have adiabatic 
behavior in the sense of = 0. In that case, we will find the following 

for the electron pressure behind the shock wave region: 

n,. 0 
and p 1 1 

5 J ~ , L - ~ I  Po3 FY d y l  

will permit an infinite 

We can now calculate the ionic pressure that must be inserted in (33s) 

1, ion = '1 - '1, EI. on the basis of P 

If, by way of another example for the front side, we assume that 
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A 

-[Hlion(h) has been plotted in Figure 16 for the example where 8, = 45O, 
- - 
so = 1.0 and for different ratios of P,,/PL, and in Figure 23 for 8 

so = 0.5. 
= 20' and 0 - - 

Here it applies that 

Measurements and the theory show that we cannot expect the same ratio of 

anisotropic pressure components for electrons and ions in solar wind. However, 

the figures cited above were intended merely to serve as an example for a 

possible variation of -[HI = -2[Glion. 

location of the interesting point where it applies that -[HI = 0 and which 

Consequently, when we use (33~1, the 

yields a boundary between permissible and nonpermissible solutions, also LlOO 
depends on the distribution of the pressures of the individual particles be- 

tween the total pressure PA, P,,, and P Therefore, we must make additional 

stipulations from one case to another in order to apply the generalized entropy 

relationship. We can even state that, for a given PI,  P,,, and 0 and with a 

calculated P1 and pl, we can always achieve that the inequation (33s) is 
satisfied by making a suitable selection of additional stipulations on the 

distribution into different partial pressures. Therefore, we shall drop the 

generalized entropy condition from our further considerations in this chapter. 

1- 

0' 

3.2. Mathematical Characteristics of the Step Functions 
- of Collinear-Shock Waves in an Anisotropic Plasma 

LlO1 

3.2.1. Generalized Shock Waves Undec Arbitrary e 

In our discussion of step functions we shall consider primarily the function 
- - 

7](h) under fixed 8 o,  so and A s .  

Bo to 0 S 8 

simply by 7 and h on the basis of Eqs. (36) through (391, we can clarify their 
characteristics at the same time. 

We shall keep in mind that we are limiting 

90". Since the other step functions are defined relatively 
0 

- 
First, because of p 2 0 it must apply that fl 2-1, where 7 + -1 is usually 1 

subject to V + 0. 
n, 0 

1 
Eq. (361, this condition in 

0' 
dependent on 8 o,  A s  and 

Moreover, because of P 
- 

2 0 it must also apply that Y 2 -1. According to 

the h, T)-plane defines a boundary curve which is 

respectively s This curve is determined by 

- 

0' 
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- 
Any discussion of t h e  curves q(h; Bo, As, which would allow f o r  the 0 - 

requirement t h a t  Y 2 -1 would lead to an excessively g r e a t  number of d i s t i n c -  

t i ons  between d i f f e r e n t  cases ,  s ince  t h i s  boundary curve is r e l a t i v e l y  com- 

plicated.  Therefore, the curves 11 (h; eo,  As, so) t o  be discussed i n  t h i s  

Section 3.2. s h a l l  be t r e a t e d  by ana ly t i ca l  means without allowing f o r  the 

condition t h a t  Y 2- -1. 

- 

- 

However, i n  order t o  acquire some rapid statements on the  p r o f i l e  of Y ,  w e  L102 - 
s h a l l  l ist some of t he  r e s u l t s  acquired from (36). Y = 0 is s a t i s f i e d  on the 

curve 

Moreover, the r e l a t ionsh ip  iq ') is of i n t e r e s t  : 
a ?  

Hence, 

Another i n t e re s t ing  r e l a t ionsh ip  is ( ? =  O, h=k O) 

This can be used t o  ca l cu la t e  the value of 7 a t  a zero point k # 0 of 

q ( h ) .  In addi t ion,  w e  ca l cu la t e  

F ina l ly ,  w e  can transform Eq. (36) with the a id  of Eq. (34 ) :  



This relationship represents a generalization of the Hugoniot relation for 

a shock wave in gas dynamics which is defined exactly by the first term 

5 $(3-q). 
C19581 with y = 5/3. 
random compressive shock wave in an isotropic plasma with finite a given 

density ratio expressed by ll is always associated with a greater relative 
pressure jump Y than the corresponding shock wave in gas dynamics. In the case 

of the anisotropic plasma this relationship applies only to part of the shock 

wave solutions. 

In the case where As = 0, we obtain Q. (77) of J3azer and Ericson 

From this we can see immediately that in the case of a 

0 

- 

These relationships make it considerably easier to establish the profile 

of Y(h). 

Another condition that must be taken into consideration for an investigation 

of v(h) is given by Eqs. (37) through (39). The radicand of the roots occurring 

there must not be negative. This requires that 

- 

- 
This requirement excludes certain regions of the h, 7-plane that are marked L104 - 

by the absence of shading in Figure 7. In the following discussion of v(h) 

weshall allow for the condition that (h - $ sin 0,) / 6 2 0. Moreover, the 

curve in the h, 7-plane on which it applies that V - is of interest n,l - bn,l’ 
for the enumeration of the characteristics of different shock wave types. In 

- 

that : n, l’bn, 1 general, it applies f o r  a curve having a certain value of V 
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permissible region 

0 

j z o  

1.0 

0 
- ; A s  

a h- 

Figure 7. Permissible r e g  ions of -the h ,  7-plane , 
based on the condition t h a t  (h - r) s i n  e0)/fi 2 0. 

- 
Consequently, we are dealing with s t r a i g h t  l i n e s  i n  the h ,  r)-plane. Con- L l O 5  - 

sequently,  it appl ies  f o r  the l i n e  with V = 1 t h a t  7 = -3/5 As. Hence, 

V 

7 < -3/5 4s and fi < 0 a r e  s a t i s f i e d .  

regions. V b appl ies  i n  the other  permissible regions. 

n , 1lbnA 1 
is g rea t e r  than b when it appl ies  t h a t  7 > -3/5 As and fi > 0, and when 

n , l  n , l  
This of course excludes the forbidden 

n , l  n , l  

Figures 10 through 23, representing the s t e p  functions f o r  go = 1.0, 

8 = 45" ,  and f o r  go = 0.5, Bo = 20' and th ree  d i f f e r e n t  r a t i o s  P,,/P, each, 

s h a l l  serve t o  i l l u s t r a t e  the discussion i n  t h i s  chapter. The conditions t h a t  

2 -1, ? 2 -1 and t h a t  (h - 7 s i n  8 )/fi 2 0 a r e  s a t i s f i e d  i n  these figures.  

0 

0 

We s h a l l  start out with a discussion of T(h; €lo, As, go). Eq. (34) shows - 
t h a t  a given value of h is associated e i t h e r  with no r e a l  value of r) or with 

two r e a l  values. On the other  hand, any value of 7 is associated e i t h e r  with 

one or  with th ree  r e a l  values of h-  

- 

In the case of large values of h ,  Eq. (35) w i l l  y i e ld  the  asymptotic 

formula 
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Consequently, i n  the case where 8 < ecrit=arc s i n  d*-= 78.5", the  root  L106 
0 

expression i n  Q. (35)  w i l l  become imaginary i f  1 h 1 is adequately great. 

the case of 8 

dominant, while 'll -t m, appl ies  where h -b m, and 7 -b -a where h -b -m. The 

second case is not permissible because of 'll 5: -1. Moreover, the requirement 

t h a t  a l l  other  s t e p  functions m u s t  be real ,  too,  implies t h a t  t he  case where 

7 -t +m is impossible. In order t o  demonstrate t h i s ,  w e  s h a l l  again consider 

the root  expression occurring i n  Eqs. (37)  through (39 ) .  The radicand reads 

(h - 11 s i n  B0)/fi .  
t h i s  respect  i n  the  T, h-plane a r e  represented i n  Figure 7 f o r  the case where 

-1 5 + 3 only. Of course,  the permissible regions with pos i t i ve  

(h - .? s i n  0 )/h extend i n t o  the i n f i n i t e  j u s t  as  the nonshaded forbidden 

regions do. Now w e  can see t h a t  the asymptotic boundary curve of 11 f o r  h -t m 

as  defined by Eq. ( 4 3 )  is located within the forbidden region under any value 

of eo * ecrit. Consequently, h has an upper and lower l i m i t  under any angle. 

In 

the  first t e r m  of t he  curly bracket is e n t i r e l y  pre- o *_'crit 9 - 
- 

- 

It m u s t  not become negative. The permissible regions i n  - 
- 

0 - 

- 
Now, we can even show t h a t  'll 3 must apply. For t h i s  purpose, we s t a r t  

- 
out by proving t h a t  -t +m is not possible f o r  f i n i t e  values of h ,  e i t h e r ,  

s ince h would then be located within the forbidden region. According t o  Eq. (351, 

it w i l l  apply f o r  numerators other  than zero t h a t  7 -b f m  when h -+ h 

0 E - 3/5 s i n  8 As o r  when i; -t = 3 s i n  0 s Because of fi > 0 where 

8 

The cases where 0 

l a t e r .  

- 
= 3 s i n  

P - - 

0 0  0 P 0 0- P 
f 0 and Eo f 0 ,  the pole w i l l  always be located within the forbidden region. 

0 
-t 0 and E 

0 0 
-t 0 a re  l imit ing cases which we s h a l l  consider 

- 
Now, where does the branch of curve q ( h )  lead which is inbound from the 

it could run along one of the curves o * ' c r i t '  i n f i n i t e ?  In the  case where 0 

defined by Eq. (431,  disappearing again i n  the i n f i n i t e  without departing 

from the forbidden region. However, our spec ia l  i n t e r e s t  is devoted t o  the 

points where the boundary l i n e s  of the forbidden region 

only touched by curves. F i r s t ,  we s u b s t i t u t e  = h/sin 

s t i p u l a t e  t h a t  8, f 90". 

- 

Three so lu t ions  a r e  obtained: 

are intersected or 

8, i n  Eq. ( 3 4 )  and 
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6 0 applies at the point where h = h , since this is the intersection 
y2 - 

of the boundary lines. 

on Eq. (34), we obtain: 
Now we seek the second value of 7 where fi = 0. Based 

- 
Even in the most disadvantageous case, both values of 7 are located far 

below 3 .  Consequently, a curve point can never be located on the boundary 

line 6 = 0 when? 2 3. 
straight line 7 = h/sin Bo when T > 3 .  

only curve point on the boundary line when 7 2 3 .  

7 = + 3 in Eq. (341, we will obtain the following when we solve the system with 
respect to h: 

-. 
According to Eq. (44), there is no curve point on the - 

The point f = 3 ,  h = 3 sin 8 is the 
0 

Now, if we substitute - 
,/io8 

5 (46) R (?=+,) = - n M ~ o  4 A S + _  

1, .z 5 

- 
These two zero points of T(h) = 3 are complex for the permissible region - - 

of the A s ,  S -plane. The straight line 7 = 3 ,  consequently, is intersected 

at only one point in every instance. 
0 

- 
After these preliminary steps, we are now ready to show that 7 > 3 is 

impossible. First, the region between fi = 0 and 7 = h/sin 8 is forbidden 
- 

0 
because of (h - 
lines E = 0 and = 3 as well as = h/sin 8 except for h = 3 sin 8 that 

sin O o ) / f i  < 0. There are no curve points on the boundary - - 
0’ 0’  

would be compatible with Eq. (34) when f 2 3. 
region 7 > 3 ,  fi 4 0, while it is impossible for any curve branch to be in- 

bound from infinity because of Eq. 

Since there is no pole in the 

(431, this region could contain a closed 
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- 
curve only. Assuming t h a t  there  is such a curve, t he  mean of two ‘I)-values 

under a c e r t a i n  value of h on t h i s  curve would have t o  be g rea t e r  than three. 

If w e  w r i t e  Eq. ( 3 4 )  i n  t h e  form 

a?‘ + b g  + C = O  ( 4 7 )  

it would have t o  apply,  therefore ,  t h a t  -b/2a > 3 .  If w e  use the  Eq. ( 3 4 )  t o  

def ine a and b ,  w e  can e a s i l y  show t h a t  t he  curve -b/2a (h) is ce r t a in ly  not 

located within the  region under considerat ion here. Consequently, no pa r t  of 

t he  curves described by Eq. ( 3 4 )  can be located within t h i s  region. There re- 

mains only the  region where v >  3 and h >  Tl s i n  e,, t h a t  is t o  the  r i g h t  of 
- - 

= h/sin 8,. No p a r t  of any curve can extend from i n f i n i t y  i n t o  t h i s  region,  
- 

because of Eq. ( 4 3 ) .  Nor is it possible ,  except v i a  the  point 

t h a t  any curve branch could reach t h i s  region by passing through the  boundary 

l i nes  v = +3 and 7 = h/sin 8,. 

t h i s  region v i a  11 = 3 ,  h = 3 s i n  8 because i n  t h a t  case it could depart  from 

t h i s  region only v i a  7 = 3 ,  h = 3 s i n  8 and because Eq. ( 4 6 )  s t a t e s  t h a t ,  

where h = 3 s i n  B o ,  11 = 3 ,  it is never possible  f o r  a double root  of Eq. ( 3 4 )  

t o  be or iented o ther  than with a v e r t i c a l  tangent. A s  a r e s u l t ,  w e  obtain the  

important inequation 

= 3 ,  h = 3 s i n  B0L1O9 

- - 
It is impossible f o r  any curve branch t o  reach 

- 
0 - 

0’ 

or  

This formula s t a t e s ,  i n  other  words, t h a t  the  curve branch incoming from 

v < 3 and passing through 7 = 3 ,  h = 3 s i n  8, must be or iginat ing i n  the  per- 

m.issible region. Therefore, the only remaining p o s s i b i l i t y  f o r  the  region 

where 7 > 3 and h > 7 s i n  8, is t h a t  of a closed curve. 

impossible can be shown by means of Vieta‘s  root  theorem. For t h i s  purpose, 

w e  r e w r i t e  Eq. ( 3 4 )  i n  order  t o  obtain a determining equation f o r  h under a 

- - 

- - 
That such a curve is 

given value of 7 :  
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- 
L e t  1 be a c e r t a i n  value on the assumed closed curve, and h 1, h2, h3 the L l l O  

associated h-values where h < h2 < h h m u s t  be located i n  the forbidden 

region. Since the curve is closed, it is impossible t h a t  only one r e a l  root 

ex i s t s .  Consequently, a l l  the  roots  m u s t  be r ea l .  According t o  Vie t a r s  root  

theorem it appl ies  t h a t  

1 3' 1 

5 

- 
Since there  a r e  no curve points  i n  existence where 7 > 3 and E 5 0,  the 

f i r s t  round bracket m u s t  be posit ive.  The two other  round brackets m u s t  be 

pos i t i ve ,  too,  s ince they a r e  supposed t o  be located on the closed curve i n  

the region where h > 1 s i n  eo. Consequently, the e n t i r e  left-hand s i d e  m u s t  

be posit ive.  5/3 the left-hand 

s i d e  is c e r t a i n  t o  be negative and smaller than -4/3 s i n  0 This is a con- 

t r ad ic t ion .  It is impossible t h a t  a closed curve could e x i s t  i n  the region 

under consideration. 

- 

On the o the r  hand, because of '( > 3 and As 

0' 

- 
Hence, we have shown t h a t  7 > 3 is impossible because e i t h e r  the curve - 

y(h )  is located within the  forbidden region or because the re  is no solut ion of 

Eq. (34) i n  the permissible regions. Moreover, Eqs. (36) through 39) show t h a t  Ll11 - - 
it applies f o r  h = 3 s i n  0 0' = 3 t h a t  Y = +m, V n,l/bn,l = +m, vn O/bn,O = +a, 

= + m, and t h a t  [u I/b = 0. 
CUn I lbn,  1 Y n , l  

80 



- - 
The next s t e p  is t o  vary the magnitudes As, s 

0' 

and 8, and t o  determine 
0- 

when the curve branch passing through h = 3 s i n  8 7 = 3 w i l l  have a v e r t i c a l  

tangent. Obviously, t h i s  corresponds t o  the t r a n s i t i o n  of t he  regions of t he  

twoinequal i t ies  (48). 
- 

According t o  Q. (47) ,  the following appl ies  t o  dv/dh: 

- 
The prime marks denote der ivat ives  with respect t o  h. Consequently, dv/dh = fa 

s h a l l  apply a t  the point where h = 3 s i n  B o ,  7 = 3. 

equation 6 -a (h  = 3 s i n  0 ) + n(h = 3 s i n  8 ) = 0. This equation w i l l  y i e ld  

- 
Hence, we obtain the 

0 0 

This r e l a t ionsh ip  is represented as  a dotted curve i n  Figure 6 where it is 

plot ted f o r  d i f f e r e n t  values of 8 Together with Eq. (48) we obtain,  moreover, 
0' 

and 

Similar 

Section 2.3. 

t o  Bazer and Ericson 

i n  order t o  c l a s s i f y  

[1958], w e  s h a l l  use these inequa l i t i e s  i n  

the M shock waves. f 

Now, w e  s h a l l  c l a r i f y  the fu r the r  progress of the curve branch passing - 
through h = 3 s i n  Bo and 9 = 3 i n  the case where 

start out by defining the zero points  of 4. 
< 3. For t h i s  purpose, w e  - 

W e  s u b s t i t u t e  7 = 0 i n  Eq. (34) 

and obtain:  
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where 

H e r e  it appl ies  t h a t  h o3 2 hO2. 

h03 ' hO1 02 03 01 
provided we make the add i t iona l  assumption 

depend only on 8 0 
A s  = 0, it appl ies  simply t h a t  h 

Consequently, a double zero point is located where h = 0. Moreover, w e  deter-  

mine the 7-values f o r  h = 0: 

W e  can see t h a t  i n  the case where As > 0 

= 0 > hO2 and where As C 0, it appl ies  t h a t  h < h < h = 0 ,  

t h a t  8, < 90". The zero points 

and on the  anisotropy parameter As. In the case where 

= 0, ho2 = -2 s i n  8 and t h a t  h = 0. 
01 0 03 

- 

A =  0 

where 

P o ,  = 0 

Now, what is the s lope of the curve branch where it passes through h =O 
- 
1 = O ?  Based on Eq. (501, we f ind  t h a t  

This r e s u l t  is not contradicted by the r e s u l t  obtained f o r  As = 0. For, 

i f  we allow As t o  s h i f t  toward zero,  the v i c i n i t y  of h = 0, 7 = 0, where the 

behavior described by (53b) is predominant w i l l  become continuously smaller ,  

while a t  some dis tance from h = 0, 7 = 0,  the behavior applicable t o  As = 0 

already becomes v i s i b l e ,  where two der ivat ives  e x i s t  f o r  h = 0, = 0 because 

two curve branches pass through the point.  

- 
- 
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. .  , , 

Using the  Eqs, (52 )  and ( 5 3 ) ,  we can now descr ibe the curve p r o f i l e  i n  

the region where 0 4 5 S 3 ,  h > 0. 

h = 3 s i n  o0 is located on t h e  boundary of t h i s  region. 

V i e t a t s  r oo t  theorem t o  Eq. 

only a value h >  0 can exist i n  the  permissible region defined by Figure 7 
where (h - 7 s i n  e ,>/g  2 0, kn addi t ion t o  a value 7. In the case where 5 
no value or two values of h 2 0 can e x i s t  Sn addi t ion t o  a value 7. 

Only one point  i n  addi t ion t o  7 = + 3 ,  

Moreover, ff w e  apply 

(491, w e  w i l l  f i nd  t h a t  in  t h e  case where 3 2 > To2 L l l k  

- 
7 02’ - 

O f  course,  

due t o  ‘2 0 t h i s  case can occur only where 4,s C 0. 

Consequently, w e  have the following curve p ro f i l e .  In the case where 

As 0 and where the  inequation &lc) fs appl icable ,  the curve q ( h )  w i l l  proceed 

from h = 3 s i n  Bo, 7 = 3 v i a  h 

A minimum of 7 can occur. In  t h e  case where &s 0 and where the inequation (51b) 

is applicable,  h w i l l  i n i t i a l l y  rise from h = 3 s i n  e 7 = 3 passing through 

a maximums. Subsequently, passing through h 7 = -3/5 A s  and t o  h = 0, 

the boundary of the region is reached again. In the case where As > 0, the 

curve proceeds from h = 3 s i n  Bo, 11 = 3 v ia  h 

on the way. 

- 
- - - -  

02 - = -3/5 As sin Bo, 7 = -3/5 As t o  h = 0, = 9 - y2 

- 
- 0’ - 

702 ’ Y2’ 

- - 
7 = 0. Extremes of h can occur 

03 ’ 

The region where -1 5 < 0 and where h > 0 s h a l l  be discussed next. In  

conjunction with Eq. (491, V i e t a t s  root  theorem w i l l  show t h a t  one, and only 

one, point e x i s t s  where h > 0 and 7 = -1, Moreover, V i e t a t s  root  theorem when 

applied t o  Eq. ( 4 9 )  w i l l  show t h a t ,  where A 5 >  0, any one 

- 

is associated with one, and only one, h-value where h > 0. In the case where 

7 > To,, one value of 7 is associated with no value of h or  with two values of 

h. 

- -  - 

Consequently, the following curve p r o f i l e s  a r e  obtained. Two p o s s i b i l i t i e s  

e x i s t  i n  the case where 4s  > 0. In t h e  f i r s t  of these,  the curve branch 

or iginat ing from h 

Moreover, a curve branch e x i s t s  t h a t  o r ig ina t e s  from h = 0, 11 = 0, achieves a 

maximum point a t  h, and departs from the region v i a  h = 0, 7 02. 

p o s s i b i l i t y ,  the curve branch or iginat ing from h = 0 passes through a 

minimum a t  point  11 where 7 2  To,, and departs from the  region v i a  the point  

where h = 0, 7 = 0. 

- - 
= 0 departs from the region v i a  the point where 7, = -1. Lll5 03 ’ - 

- 
In the  second - 

03 ’ - - -  
- - 

A second branch proceeds from h = 0, ?lo, t o  the point where 
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Ill I 

- 
7 = -1. 

curve branches. 

s a t i s f i e d .  In the  case where As 5 0, one curve branch proceeds monotonely 

from h = 0, T l  = 0 t o  a point where 7 = -1. That p a r t  of t h i s  curve branch 

where h <  -3/5 As s i n  8 is excluded, according t o  Figure 7 ,  because it m u s t  

apply t h a t  da(h -7 s i n  g 0 ) / G  > 0. 

The t r a n s i t i o n  from one case t o  the other  is made v i a  two intersect ing 

This requires  t h a t  a r e l a t ionsh ip  between E o,  As, and Bo is 

- - 

- 0 

Now, w e  s h a l l  study the region where h 0. We had already obtained the 

following r e s u l t s  f o r  the boundaries of t h i s  region. 

it is impossible f o r  any curve branch t o  be incoming from i n f i n i t y  between 

points  7 = -1 and 11 = +3. There is no curve point on the s t r a i g h t  l i n e  7 = +3 

when h < 0. There a r e  two curve points  on the v e r t i c a l  s t r a i g h t  l i n e  where 

h = 0, one a t  point To, according t o  Eq. (53a),  and the other  a t  point y = 0. 

In the l a t t e r  case,  the s lope w i l l  always be dr)/dh = -2/sin 8 

where As = 0, these two curve points w i l l  coincide with h = 0 so t h a t  two curve 

branches w i l l  pass through h = 0, 7 = 0. The s t r a i g h t  l i n e  7 = -1 can contain 

one or two curve points  when h <  0 i n  the case where As 2 0 ,  t h i s  being h 

unless it appl ies  a t  the same time t h a t  8 = 0’ and As = 0. In the case where 

As < 0 and where 8, f 90°, we have two zero points hO2 e h 

According t o  Eq, ( 4 3 1 ,  

- - - 

- - 

In the case 
0’ 

- - 

02’ 

0 
C 0 or none a t  a l l .  

03 
In the case where As > 0 w e  obtain one curve branch when h 0. This 

= 0,  branch starts out with the slope d$dh = -2/ s i n  8 

achieves a maximum i n  7 ,  and then passes through h = h 7 = 0. Subsequently, L116 

the re  a re  two p o s s i b i l i t i e s :  i n  t he  f i r s t  case,  the curve branch passes 

through a minimum i n  7 and terminates a t  point h = 0, 7 = 7 02. 

possible case,  the curve branch or iginat ing from h = hO2, 7 = 0 w i l l  terminate 

on the s t r a i g h t  l i n e  where ‘ll = -1. Another curve branch starts c lose r  t o  the 

s t r a i g h t  l i n e  h = 0 where 7 = -1, and terminates where h = 0 ,  7 = 7 

a t  point h = 0, 
0 - - 

02’ 

- - -  
In  the second - 

- 
- -  - 

02‘ 

We designate Of course,  t he re  m u s t  be a minimum i n  h o r  a maximum i n  1 hi. 

t h i s  hmin. 

s t h i s  minh”u where dh/d7 = 0 is located between 7 = -1 and 7 = i3. In 

p a r t i c u l a r ,  the minimum can be located above or below the h-axis. In the 

boundary case it w i l l  be located near h = h 02. 

( 5 0 )  require t h a t  b = 0 and c = 0 apply a t  the same time. 

condition f o r  the a p p l i c a b i l i t y  of dh/d?) = 0 i n  the case where h = h 

In the case of a large region of possible values of 8 o?  As, and - - - - - 
0’ 

In t h a t  case,  Eqs. (47 )  and 

We obtain the following - I 

7 = 0 :  02’ 
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In p a r t i c u l a r ,  we f ind  t h a t  

-03 1 2 '  I 0 where 1 = 402, q =  0 

where 

O L q' c a 

where 

where R =  Q,, , 3 = 0 

W e  s h a l l  use these r e l a t ionsh ips  f o r  c l a s s i f i c a t i o n  l a t e r  on. The boundary 

r e l a t i o n  (54a) is represented as  dots and dashes in  Figure 6 ,  using d i f f e ren t  

a n g l e s  . 
Final ly ,  w e  can show t h a t  curves o the r  than the curve branches described 

- 
above cannot occur i n  the  region h < 0, -1 7 < 3. Based on what we s t a t e d  

before,  these could be closed curves only. Such a curve would have t o  s a t i s f y  

h < hmin 5 hO2. , L e t  us  assume the existence of such a closed curve. 

t o  Figure 8, a l i n e  drawn from a point A of t h i s  curve t o  the zero point would 

i n t e r s e c t  the closed curve once again a t  point B, and the curve passing through 

the  zero point h = 0, = 0 which w a s  described before w i l l  be in t e r sec t ed  a t  

a t  a point C. There must be a point C on the  imaginary l i n e  because the tangent 

placed through h = 0, 1 = 0 w i l l  i n t e r s e c t  the s t r a i g h t  l i n e  = 3 a t  a point  

According 

- 

- - 
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Therefore, together with points  A ,  B, C and the  zero point t he re  w i l l  be four  

points  on the  aux i l i a ry  l i n e ,  which is impossible because of Eqs.(34) and ( 4 9 ) ,  

respectively.  Therefore, another curve cannot ex i s t .  Final ly ,  the requirement 

t h a t  (h - T l  s i n  0 )/h 2 0 according t o  Figure 7 and Eq. (45) means t h a t  the L118 
curve branch with 

- - 
0 

2 0 and h > 3/5 As s i n  eo is impossible. 

Figure 8. 
T(h)  cannot e x i s t  where 4s 2 0 i n  the range h € 0. 

Sketch t o  prove t h a t  a closed curve 

Le t  us  now tu rn  t o  the case where As € 0. This is somewhat more compli- 

cated than the case where As > 0. W e  s t a r t  out with the behavior of the curve 

branch which passes through the zero point h = 0 ,  7 = 0, and has the slope 

dT/dh = -2/sin e In order t o  study t h i s  s i t u a t i o n ,  w e  f i r s t  determine the 

location of the curve point of the tangent i n  the zero point which is repre- 

sented i n  Figure 8. 
because of the form of Eqs. (34) and (491, respectively.  We s u b s t i t u t e  the 

tangent ia l  equation 7 = -2/sin 8, h i n  Eq. (341, w e  obtain 

- 
Lll9 0' 

A s  a r u l e ,  such a curve point where h f 0 must e x i s t  

- 

In the boundary case where h = 0, it app l i e s ,  except f o r  8 = 0 t h a t  T12 0 
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This r e l a t ionsh ip  is shown by a dotted curve i n  Figure 9 where Eq. (55b) 

w a s  a l s o  used f o r  eo = 0. 

- 
Consequently, w e  have the following curve p r o f i l e :  where .2 it 

appl ies  t h a t  11 2 0 where h = 0, 11 = 0, and the curve which is incoming from 

h = 0, 7 = 0 continues t o  increase its s lope,  reaching a minimum i n  h ,  and then 

reaches the point where h = 0,  7 = qO2 > 0. 

curve branch terminating a t  two points  where 7 )  = -1 can e x i s t  i n  the region h < 0. 

A s u f f i c i e n t  condition f o r  the existence of such a curve is the presence of two 

curve points  where 11 = 0 and h < 0, o r  of the boundary case of one tangent 

point. In t h a t  case, Eq. (52) demands t h a t  s i n  0,(l - l/5 A s )  + 4/5 A s  cos L121 

-11  - 0 0 ,T’  

- 
- 

In addi t ion,  a closed curve o r  a 
- 

- 
2 2 

20 2 0 be s a t i s f i e d  f o r  the radicand. Consequently, A s  2 m u s t  apply, 0 
where 

is independent of s= the curves A s  = ( A s ) c r i t  i n  Figure 6 Since (Aslcrit 0’ 
a r e  v e r t i c a l  l i n e s  which a r e  located a t  the end of the dot-dashed curves t h a t  

correspond t o  Eq. (54a). O f  course,  the s ignif icance of the dot-dashed l i n e s  

is the same f o r  As < 0 as  f o r  A s  > 0. They represent the boundary where h min 
s t i l l  has a pos i t i ve  o r  negative 7 ) .  In the case of value t r i p l e t s  B o ,  As, so 

on the dot-dashed boundary curve the slope a t  point h = h ‘ll = 0 w i l l  be 

i n f i n i t e .  Of course,  the c r i t e r i o n  of i n f i n i t e  slope a t  the extreme zero point 

of Consequently, 

t he  dot-dashed l i n e s  must terminate a t  A s  = ( A s )  The terminal point of 

such a l i n e  i n  the A s ,  -plane is remarkable insofar  as  the closed curve de- 

generates i n t o  a point where s u i t a b l e  value t r i p l e t s  0 

f o r e ,  t h i s  point a t  the same time represents the point of maximum A s  on the 

boundary curve of the region A s ,  within which it is impossible f o r  closed 

curves v (h )  with 2 t o  ex i s t .  However, the conditions t h a t  E 2 s 
and A s  2 ( A s l c r i t  a r e  merely a s u f f i c i e n t  set  of conditions f o r  t he  existence 

of a closed curve o r  of a curve branch t h a t  terminates i n  two points  where 

7 = -1. Moreover, p a r t i a l  areas  e x i s t  i n  the region where 2 s and 

- - - 
- 

02, 

- 
T(h) hO2 can be used only where hO2 e x i s t s  as  a r e a l  number. 

c r i t ’  

0 
There- A S ,  Eo ex i s t .  

0’ 

- 
- - 0’ - 

0 O , T  0 0 , T  

- - 
0 0,T 

A s  < ( A s I c r i t  which contain closed curves below or above the h-axis. 
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*2.0 - 
- - 
' 0  

t1 .5 -  

9 1.0 - 

+0.5- 

, 
Figure 9. Boundary l i n e s  f o r  the existence of Alfven 
shock waves (dashed) and f o r  the s ign  of h (dotted) 

within the permissible region of the As, E -plane. 

The curve parameters are values of 8 

- 1'92 

0 

0' 
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- - 1  

In the case where one curve branch with *I) = -2/sin 8, and L122 0 0 ,T '  
i'' < 0 s t a r t s  a t  h = 0, v = 0. t h i s  branch passes through 

h = ho3, *I) = 0, reaches pos i t i ve  values of *I) again after passing through h = h 

11 = 0, passes through h = h 7 = -2/sin 8 - -  T,2' 
point h = 0, *I) = v 02. 

a t  'll = -1 and t h a t  a new curve branch, incoming from *I) = -1, passes through 

h = ho2, *I) = 0 and h = h 

*I) = To2- 
*I) = 0, reaches a minimum a t  h 

and reaches the point h = 0, *I) = *I) = -2/sin 8 

case of S S a closed curve p r o f i l e  or a p r o f i l e  cut  off a t  = -1 can e x i s t  0 0 , T  - 
i n  addition t o  the curve branch or branches passing through h = 0, v = 0 and 

When As > - - 
02' - - 

and f i n a l l y  reaches the  
0 * hT,2' 

Another p o s s i b i l i t y  is t h a t  t h e  curve branch terminates - - 
- - 

and reaches the point h =0, 
0 hT,2' '+ -2/sin 8 T,2' - -  

In the  case where As one curve starts out from h = 0, - 
T,2' < h , passes through h = h - hain T,2 - -  

02. Moreover, i n  the 
0 * hT,2' - - 

- -  
02' h = O , I l = Y  

To t h i s  point of our discussion, w e  were frequent ly  forced t o  exclude the 

cases where 8 = 0" and Bo = 90" i n  order t o  prevent deviations.  W e  s h a l l  now 

discuss these cases where it is best  t o  generate the  shock waves with p a r a l l e l  

magnetic f i e l d  vector and E-vector by the boundary t r a n s i t i o n  0 
shock waves with v e r t i c a l l y  oriented E-vector and ;-vector by the boundary 

t r a n s i t i o n  8 -t 90". In both cases,  the e f f e c t  of anisotropy is only small be- 

cause the pressure tensor  components P and P disappear. 

0 

-b 0" and the 0 

0 

YX XY - 
We start out with 8, = 90". In the h ,  *I)-plane, we have a s t r a i g h t  l i n e  - - 

passing from h = -1, 'fl = -1 t o  h = 3 ,  11 = 3. 

and the curve 

The l a t t e r  starts a t  h = - '1/3 + 11- f = - 
h = 0, *I) = 0 with a slope of -2, reaches a maximum, - 

- '1 passes through 

passes through point h = -2, 

fi = 0 and f i n a l l y  a r r ives  the point 

In the case of ?, w e  obtain an inde f in i t e  expression of the form 0/0 f o r  

Bo = 90" i f  w e  use Eq. ( 3 6 ) .  

h = - 4/3 - 7/16/9-: I f = - 1 -  

In the case of the boundary t r a n s i t i o n  8, + go0,  
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- 
we obtain the following for Y: 

Since bn = 0 where 8, = 9O", it follows from Eqs. (37)  and (38) that the 
curve branch (57b) represents special tangential discontinuities with V = 

n,l 

where 

Moreover, it applies that 

The following 

reference velocity 

L 

I P  + E U q =  0 

applies to the velocities of branch (57a), using the 

i UJ = 0 (57f 1 

Now we shall discuss the shock wave solutions that result from the boundary 
- 

transition 8 -P 0'. In the h, 7-plane, these boTmdary curves are generally 

composed of pieces of the 7-axis and that part of the ellipse 
0 - 

- 
where 'I) 2- -1. 

condition (h - 7 sin 8 )/h in mind. 

In the individual cases of boundary transitions, we must keep the L125 - - 
0 

We can give the parts with h = 0 the designation G as a generalization St 



of the  c o l l i s i o n  r e l a t ionsh ips  f o r  shock waves i n  gas dynamics. The p a r t s  with 

h # 0 on the  e l l i p s e  must be considered switch-on shock waves S 

English switch-on). 

d i r e c t l y  with the a i d  of Eqs. ( 3 6 )  through (39) .  
solut ion of i nde f in i t e  expressions. W e  obtain 

( f o r  t he  W 
The other  jump functions of the S p a r t s  can be calculated W- 

The GSt-parts require  the 

The other  jump functions read 

According t o  Eq. (58a), an S -solution w i l l  not e x i s t  when W 

-4 =.I - (I- So) + 5 A S  < 0 e 5 

This holds t r u e  within the  parabola 

- - 2  
A s  = -  - '' ( f -  s , )  0 

8 

- - 
whose apex is located i n  the A s ,  s= -plane a t  As = 0, so = 1, and which opens t o  

the l e f t .  A t  l e a s t  p a r t  of the e l l i p s e  e x i s t s  outside the inside area of the 

parabola i n  the A s ,  -diagram, i n  the region -1 y 5 +3 of the h,  r)-plane. 

The center  of the e l l i p s e  f o r  7, = 3/2(1 - s= ) below the h-axis when E > 1, 

and above it when < 1. In the case where As > 0, in t e r sec t ions  of the 

e l l i p s e  with the h-axis e x i s t  which merge i n t o  a tangent point i n  the boundary 

case where As = 0. In the  case where As < 0, the e l l i p s e s  a r e  located e i t h e r  

above or below the h-axis. The extremes of 9 on the e l l i p s e  within -1 7 4 +3 

0 

- - - 
0 - 

0 0 

0 

- - 
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- 
are designated 1 and 9 max min' - 

In addition to that part of the ellipse where 1 2  -1, we usually have parts 
We shall compile 

- 
of the 9-axis as G 

the results for the G 

sections can overlap. 

result from curves with h I; 0 and with h 2 0. 

a + sign: 

-parts of the boundary curves for Bo -t 0'. St 
-parts in tabular form, where the individual partial 

A distinction must be made between the G 
St 

-parts that St 
We designate this by a - or by 

TABLE 4. 

. . . .  __  . . 
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TABLE 4 (continued) 

' I  

Liz8 

Additional conditions 

The results compiled in Table 4 are useful in conjunction with Figures 6 Ll29 

and 7 where it is desired to make a rapid determination of the approximate 

profile of a shock wave curve for small angles. 

The limiting case where As + 0 was mentioned briefly once before, in - 
conjunction with the behavior near h = 0, ?') = 0. Since the results of Bazer 

and Ericson [1958] are available, we shall dispense with a special discussion 
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here. Formulas 35 through 39 merge into the formulas of Bazer and Ericson with- 
out complications. 

r 
3 . 2 . 3 .  Collinear Alfven Shock Waves 

In Para. 2.5.2., we studied Alfvgn shock waves that are not collinear 

as a rule but can be collinear. 

transverse field H is not contained in the conservation equations. Therefore, 

we can use the algebraically simple case of the collinear AlfvLn shock wave 

in order to study some additional characteristics of this shock wave type. An 

Alfvgn shock wave with isotropic pressure in its rear will be present, and only 

then, when it applies that 7 = -3/5 As and that [qr] f 0. 

We had seen that the rotational angle of the 

t r  

- 
We substitute - 

= -3/5 As in Eq. (49) and obtain one or three real solutions for h. The 

solution that h = 0 is forbidden because of [u ] = 0. The two other solutions 

read : 

- 
Y 

These solutions will exist only when the radicand of the root is not 
- 

negative. We obtain the following boundary curve in the As, K -plane: 0 

(As, 90) is represented by a dotted curve in Figure 9 
Alfvgn shock waves are possible when it applies 

0, lim This function 

for different values of 8,. 

that As > 0 and Eo > 
- 

or that 4s < 0 and E < 5 0,lim o 0,1im' 
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- r - r T  1 r T 1 

-2.0 - 1.0 0 10 2.0 
h- 

- - 
Figure 10. Jump functions y(h) for Go = 1.0, 

0, = 45" 
The numerals at the curves indicate P,,/PL. 
The values of P,,/P, = 0.6, 1.0 and 11.0 
correspond to the values of As = -0.5, 0, 5/3. 
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h- 

- 
Figure 11. Jump functions Y(h) for = 1.0, 0 

eo = 450,. 

The numerals a t  the curves indicate P,,/PL. 
The values of e , / P L  = 0.6, 1.0 and 11.0 
correspond t o  the values of As = -0.5, 0, 5 / 3 .  
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e,. 4 5 0  

io= 1.0 

:eo:, -1.0 0 1.0 I , ,  , , 2.0 , , 
h -  

- 
Figure 12. Jump functions V n,O/bn,O for So - 1.0, 

0, = 45". 

The numerals at the curves indicate P,,/P,. 
The values of P,,/P, = 0.6, 1.0 and 11.0 
correspond to the values of As = -0.5, 0 ,  5 / 3 .  
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BO' 4 5 .  
;o 1.0 

1 

- 2.0 -1.0 

1.0 - 
, I  I I I I " " -  

h- 
1.0 2.0 

Figure 13. Jump functions Vn,l/bn,l for 0 = 1.0, 

The numerals at the curves indicate p ,,/% . 
The values of p , / P L  = 0.6, 1.0 and 11.0 
correspond to the values of A S  = -0.5, 0, 5/3. 

eo = 450. 



. . .. , 

- 1.0 

- 5 . 0 1  

I 

1 
- 1.0 0 1.0 2.0 

- 1 0 . 0 - 1  - 2.0 
h -  

- 
Figure 14. Jump functions Cunl/b for go = 1.0, 

n,l 
eo = 45". 

The numerals at the curves indicate P,,/P,. 
The values of ?,/PA = 0.6, 1.0 and 11.0 
correspond to the values of As = -0.5, 0 ,  5/3. 
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Figure 15. Jump functions ] [u ]l/b for go = 1.0, 

Y n,l 

The numerals at the curves indicate P,,/P,. 
The values of P,,/PL = 0.6, 1.0 and 11.0 
correspond to the values of As = -0.5, 0 ,  5 / 3 .  

eo = 450. 

100 



i 

i 

-30 -2.0 
. . . .  
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Figure 16. Jump functions -[:] for zo = 1.0, 

e = 45". 0 
The numerals at the curves indicate P,,/P,. 
The values of P,,/PL = 0.6, 1.0 and 11.0 
correspond to the values of As = -0.5, 0, 5/3. 
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io = 0.5 
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0 -  
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-J.O - 0.5 0 

h 

Figure 17. Jump functions j(h) for go = 0.5, 
e = 200,. 
0 

The numerals at the curves indicate P,,/P,. 
The values of ?,/PA = 0.667, 1.0 and 1000.0 
correspond to the values of As = -0.2061, 1.0 and 
+0.8656. 

102 



a. = 200 

so. 0.5 

0.66 7 /i! 10000 

- 
Figure 18. Jump functions Y(h) for = 0.5,  0 

8 = zoo. 0 
The numerals a t  the curves indicate P/,/PL. 
The values of P,,/Pj= 0.667, 1 .0  and 1000.0 
correspond to  the values of A s  = -0.2061, 1.0 and 
+0.8656. 



8, = 2oa 

z0 x 0.5 

I 

1.0 
\ 

4 I I ' ' ' ' ' a ' ' , ' '  0.5 1.0 -0 ,s  0 -1.0 
h -  

n,O/bn,O for = 0.5, Figure 19. Jump functions V 

0 
The numerals at the curves indicate P,,/PA. 
The values of F',,/P, = 0.667, 1.0 and 1000.0 
correspond to the values of As = -0.2061, 1.0 and 
+0.8656. 

0 
e = 200. 
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e, I 200 

i, = 0.5 

3.0 

2.0 

1 0  

4- 7 

I 

h 

- - Figure 20. Jump functions V n,l/bn,l = So = 0.5,  

e = 2 0 ° .  
0 

The numerals at the curves indicate P,,/Pl. 
The values of e,/P, = 0.667, 1.0 and 1000.0 
correspond to the values of As = -0.2061, 1.0 and 
+O. 8656. 
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Jo 0.5 

lu,l - 1 ,.,I 

- 
Figure 21. Jump functions [u ]/b f o r  go = 0.5, 

r? n,l 
e = 200. 0 

The numerals at the curves indicate P,,/PL. 
The values of Pn/P, = 0.667, 1.0 and 1000.0 
correspond to the values of As = -0.2061, 1.0 and 
+O. 8656. 
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l*ll 
47.1 - 

8 0 =  20. 

io = 0.5 

ru,i > o - 
r ~ , i  o --- 

- 
Figure 22. Jump functions 1 [~~]\/b,,~ for go = 0.5 

The numerals at the curves indicate P,,/P,. 
The values of P,,/Pl = 0.667, 1.0 and 1000.0 
correspond to the values of As = -0.2061, 1.0 and 

e = 200. 
0 

+o. 8656. 
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Figure 23. 

The numerals at the curves indicate P,,/P,. 
The values of e,/PA = 0.667, 1.0 and 1OOO.O 
correspond to the values of As = -0.2061, 1.0 
and +0.8656. 

Jump functions -[GI for so = 0.5, e = 20° .  
0 

ea = 200 

30 = 0.5 

IOW.0 

1.0 

1 1 1 1 1 1 1 1 1 1 1 1  I l l 1  I I I I I  I I I I I 1  
-1.0 - 0.5 0 a5 1.0 
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3.3. Classification and Physical Discussion 
of Collinear Shock Waves 

3.3.1. Classification System 

We shall implement a classification of shock waves in this section. The 

guiding principle shall be that any definition of a shock wave type for As + 0 

will transform into the corresponding definition by Bazer and Ericson L19581. 

Moreover, each shock wave type shall differ markedly from all the other types. 

We shall define six types of shock waves. The criteria for their occurrence 

are the following: 

TABLE 5 .  

- - 
so 2 I - 5 / 2  s i n 2 ~ o + ~ s ( 1 / 3  + 1/15 sin2eo)  

(according to inequality 51c) 

= 2 
so 4 1 - 5 / 2  sin2Qo+ A s ( l / 3  + 1/15 s i n  8 0 )  

(according to inequality 51b) 

2 

q/s in2Qo(l-1/5  AS)^ + 4/5 A s  ~ 0 ~ ~ 0 ~  ’ 

- - 
so 2 I - 7/12 s i n  Q0(1-I /5A s)-13/12 s i n  8, * 

(according to inequality 54b) 
and L I S  2 (4s),,it (according to Eq. (56 )  - 
~ ~ - 4  I - 7/12 s i n 2 ~ o ( i - 1 / 5  As)-13/12 s i n  00 

~ f s i n 2 0 0 ( 1 - l / 5  As12 + 415 A s  Cos28, 
-7 

(according to inequality 54c) 

M i 3 )  A s < ( (according to Eq. (56 )  
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Some of the individual shock wave types are mutually exclusive because any 
- 

t r i p l e t  of values 9 - is associated with only one M -shock wave and 

transform i n t o  

corresponding types by Bazer and Ericson C19581 when AS -t 0. Ms(3)-type 

(27 
0' so' As 

M -shock wave. The types in  
S 8 

shock waves e x i s t  only i n  the case of s u f f i c i e n t l y  s t rong negative anisotropy. 

We s h a l l  now describe the individual shock wave types, using pr imari ly  

but a l s o  the r a t i o  PI, - 9 
H;/kn 

physical aspects. W e  s h a l l  use not only As = 5/3 

P,,/PL as  the measure of antropy. 

3.3.2. M+-Typ e Shock Waves - 

We s h a l l  s t a r t  out by considering the  M -type shock waves, These are de- f - 
f ined as the  shock wave solut ions where h 2 0. 

is excluded only for A s  < 0. Consequently, the curve segments where h 2 0 

a r e  M -type shock waves. It appl ies  generaIly f o r  t h i s  shock wave type, Kith 

the  exception of the  case when h = 0, that t h e  f i e l d  lines of the magnetic 

f i e l d  a re  "broken off" by the shock wave normal. The quant i ty  of t h e  magnetic 

f i e l d  behind the shock wave, I El\ ,  is always g rea t e r  than it is i n  f ront  of the 

shock wave, with the exception of h = 0. The t ransverse p a r t  of the magnetic 

f i e l d ,  H r e t a i n s  its or ientat ion.  Currents a r e  required i n  order t o  change 

the magnetic f i e l d .  Their area current  densi ty  according t o  the geometry 

shown i n  Figure 2 is 

The point w h e r e  h = 0, at = 0 

f 

t r '  

where cis the u n i t  vector i n  the  z-direction. 

waves the force L x  5 (s ince 

veloci ty  component un and an accelerat ion of u 

shock waves of type M (q 
(Vn,l 2 Vn,o) wrst be accelerated by me pressure P 

h > 0. 

pressive shock waves. 

In the case of the M -type shock Llk7 f 
is equal to E) w i l l  cause a r e t a rda t ion  of the 

This means t h a t  expansive - Y- 
0 )  where the  plasma on the average accelerates  f 

- P if it app l i e s  that- 0 1  
This w i l l  r e s u l t  i n  ? < 0 &ere h > 0 even i n  t h e  case of weakly com- 

For instance,  we can see i n  Figures 17 and 18 t h a t  the - - - 
shock wave with ?,/PI = 1000 has a Y 2 0 only f o r  7 2 0.56. Y i n  Figure 11 w i l l  - 
become zero a t  a r a t i o  P,,/PA = 11.0 only i f  it already appl ies  t h a t  7 = +0.53 

according t o  Figure 10. 
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The index f f o r  t’fasttf applied t o  t h e  Mf-type shock waves implies another 

important cha rac t e r i s t i c .  

s i n  eo, 0) the  ve loc i ty  components V 

equal t o  the associated generalized Alfven wave ve loc i t i e s  i n  the d i r ec t ion  of 

E, which is E = b and In t h i s  sense they are fast. Consequently, 

w e  can see t h a t  even weakly expansive M -type shock waves can be fas t  when the re  
f 

is pos i t i ve  anisotropy. I f  we introduce the c l a s s i c a l  entropy condition i n  the 

form 

In  the  case where fl 2 -3/5 As and h 2 max(-3/5 As 

and V a r e  greater than or a t  most 
n , l  , n,O 

n , l  n , l  

and implement the boundary t r a n s i t i o n  As -+ 0, w e  w i l l  f i nd  i n  agreement with 

Bazer and Ericson [19581 t h a t  the veloci ty  component V of the M -type shock 

waves is g rea t e r  than o r  a t  l e a s t  equal t o  the veloci ty  of f a s t  magnetoacoustical 

waves i n  the 2-direct ion on the f r o n t  side.  Now, i n  the anisotropic  case,  w e  

can s t a t e  t h a t  t he  generally ipplicable entropy condition p re fe r s  l a r g e  compression 

r a t i o s  1 + ‘ll = p / p  Therefore, it is a l s o  meaningful from the point of the 

boundary case where As -+ 0, t h a t  c l a s s i f i c a t i o n  by ve loc i t i e s  be made using the 

region j 2 -3/5 As and not 7l S: -3/5 4s. 
veloci ty  jump [u 1 can grow beyond a l l  bounds (+ - m, only i n  the case of the 

M -type shock waves. 

n,O f 

- 
L148 1 0’ 

- 
Another c h a r a c t e r i s t i c  is t h a t  the 

n 

f - 
Moreover, the region ‘ll 2 -3/5 As is in t e re s t ing  because it includes the 

shock waves which develop i n  the event of very strong t o  i n f i n i t e l y  strong - 
perturbations where the r e l a t i v e  pressure jump Y ,  the  v e l o c i t i e s  V V 

A - n , l ’  n,O’ 
- w  - ‘n, 1 - 9 

[un] ,  and the magnitude -[HI can grow without bound. 

V = w, [u 3 = -a5 and -[HI = m a r e  reached when ‘Il = + 3 ,  which a l s o  describes 

the maximum density jump of p 

corresponds t o  the  known boundary value of Z / ( y  - 1) f o r  a medium where the r a t i o  

between the s p e c i f i c  heat values i n  the rear of the shock wave is y = 5/3. This 

boundary value of = +3 is independent of go, As and 8 because, i n  the case of 

i n f i n i t e l y  strong shock waves, the flow energy of the plasma i n  f r o n t  of the 

shock wave is i n f i n i t e l y  g r e a t  compared t o  the thermal energy and the  magnetic 

f i e l d  energy whose c h a r a c t e r i s t i c s  are r e f l ec t ed  by t h i s  t r i p l e t  of values. 

Since the r a t i o  of thermal energy t o  flow energy i n  the rear of the shock wave 

tends toward a f i n i t e  boundary value i f  fl 3 +3, the c h a r a c t e r i s t i c s  of t he  

Y = m, 
A 

n,O n - 
= 3 p t h a t  can take place. Tl = +3 

1 - Po 0 

0 
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spec ia l  i n t e r r e l a t ionsh ip  ex i s t ing  between pressure and energy are contained i n  

the  boundary value 'll = Z/(y -1). 
- 

On the  other  hand, the magnetic f i e l d  i n  the  rear of the shock wave remains - 
f i n i t e .  In t h a t  case, 

the  de f in i t i on  used f o r  h requires  t h a t  H = 4 H appl ies  t o  the t ransverse 

components of the magnetic f i e ld .  Moreover, s ince  [H 3 = 0, we encounter t he  

g rea t e s t  magnetic energy densi ty  r a t i o  H /8n/H /8n of 16 f o r  i n f i n i t e l y  strong 

shock waves i n  the case where 8 = 90" , t h a t  is f o r  t ransverse shock waves. 

In  the case where 7 + + 3 ,  it  appl ies  t h a t  h -t 3 s i n  8,. 

Y , l  Y,O 

n 2 2 
-1 * 

0 - 
The change i n  the t ransverse veloci ty  component where 7l -t +3 w i l l  decrease 

continuously s o  t h a t  [u 1 = 0 appl ies  t o  7 = +3. This is due t o  the f a c t  t h a t ,  

where 'll -b +3, the  m a s s  which must be accelerated per  u n i t  of time by the  trans- 

verse component of the force a x  Kand of the anisotropy fo rce ,  continues t o  

increase so t h a t  [u 1 -b 0 appl ies  t o  the veloci ty  change. 

L149 - 
- Y 

Y - - 
The jump function branch which, i n  the case where 7 -b +3, leads t o  Y -I +eo, 

V + m, etc,, can be seen from Figures 10 through 23 where it is shown f o r  two 

d i f f e r e n t  t r i p l e t s  of values and f o r  the d i f f e r e n t  s t e p  functions. We can 

observe a qu i t e  var iable  behavior. In  the  case where 

represented i n  Figures 10 through 16 ,  11, 
+[un], l[uy]l decrease monotonely 

value of h and ending a t  h = 3 s i n  8 

and 8, = 20°, a value of 

n 

- 1.0 and 8, = 45" 
0 -  - -  

V and -[Q] increase,  while 
'9 'n,1? n,O 

with increasing h ,  s t a r t i n g  from a c e r t a i n  

In Figures 17 through 23 where go = 0.5 
0' 

hmaX = 1-25. 3 sin Bo = 1.025 is reached. From t h a t  

I 
- -  

V and -[GI increase,  while [un], I[u 1 decrease with 
Y po in t ,  11, y, Vn,$  n , O  

decreasing h u n t i l  f i n a l l y ,  a t  point h = 3 s i n  8 i 3, + 03, + m, + a, + m, as  

w e l l  as  - m and 0 are reached consecutively. These two cases character ize  the 

difference between types M 

type shock waves, the slopes d 

f o r  h = 3 s i n  8 

are negative. In  the  generally applicable case, these s igns do not apply t o  

a l l  values of h along the curve branch. In the case of the M (')-type shock - f 
waves, the slopes a t  point h = 3 s i n  8 = +3 have exact ly  the opposite signs. 

The boundaries of types M and M a r e  represented f o r  d i f f e r e n t  angles by 

the dotted curves i n  Figure 6. This agrees with Figures 10 through 23, where 

0' 

(1) (2) shock waves. In the case of the M - and M 
f f f 

/dh,  dP/dh, d/dh ( v,,, /b,, ,) s d/dh ( V, ,o /b,,o) ! - d/dh [ 141 
- 

= +3 are pos i t i ve ,  while d/dh ([ur3/bn,,) and d/dh(IIUyl[ /b, , , )  
0' 

(28' 
f 
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w e  can see t h a t ,  i n  the case where 

Mf(l)-type shock waves, and where go = 0.5, 8, = 20°, 

waves. 

only where Bo 5 39.2'. 

= 1.0, eo = 45', w e  are dealing with 
0 

with M (2)-type shock 
f 

Moreover, we can see from Figure 6 t h a t  M (2)-type shock waves can e x i s t  L150 
f 

Reduction of t h i s  angle w i l l  enlarge the  permissible 
- 

region i n  the As, E -plane. 

crease As t o  move from t h e  M (')-region i n t o  the  Mf(2)-region, unless  w e  reach 

If 8 and go are maintained constant ,  we can in-  
0 0 

f I ,  1 \I) the i n s t a b i l i t y  l i m i t  first, o r  unless PI = 0. 

shock waves e x i s t  above go = 14/9. 
w e  have M (2)-type shock waves where 8 

where 8 > 39.2". 

In any event,  only Mf -type 

0' 
< 39.2', and M (')-type shock waves 

In the case of very small values of 

f 0 -  f 

0 

In t h e  case of t he  M -type shock waves, we s tudied i n  spec ia l  d e t a i l  t he  c - 
behavior where T) -+ +3. Among other  aspects t he re ,  we had V -+ +a and 

V 

shock waves t o  reach V + +m o r  V -+ +m ex i s t s .  The only requirement is 

t h a t  -2/3 As/s cos 8 2 -1 be s a t i s f i e d .  In t h a t  case,  where h -$ 0 and 7 -+ 0, 

we obtain Y -+ -2/3 As/so cos €lo, [un] -+ 0,  [u 1 + 0 and [ H I  + f i n i t e  value. 

Moreover, a f i n i t e  value is achieved by poVn,o - p lVn , l  with -2/3 I\s/so cos 

In the  case where As is too small ,  the  isotropy-producing processes w i l l  become 

too weak so t h a t  the formulas used here w i l l  lose t h e i r  v a l i d i t y  near h = 0, 

n,O 
-+ +m. When the re  is pos i t i ve  anisotropy, another p o s s i b i l i t y  f o r  Mf-type 

n , l  

2 n,O n , l  - 

O 2  - 0  A 

2 y  2 2 
Bo. 

- 
= 0. Here, i n  the v i c i n i t y  of h = 0, w e  have shock waves t h a t  a r e  expansive - 

so t h a t  a pressure reduction r e s u l t s .  In the case where h -+ 0 and Tl + 0, 

respect ively,  only the pressure reduction and especial ly  the i so t rop iza t ion  

remains. These waves a r e  e i t h e r  located on the same curve branch as  the 

i n f i n i t e l y  strong shock waves (cf.  Figures 17 through 23) o r  on a curve branch 

t h a t  w i l l  reach only small values of h (cf.  Figures 10 through 16). Moreover, 

some of the curve branches can be absent because of P < -1. 

t r a n s i t i o n  between these two p o s s i b i l i t i e s  does not correspond t o  the t r a n s i t i o n  

from M (')-type t o  M (2)-type shock waves. 

waves, w e  w i l l  f i nd  a compressive counterpart  t o  these shock waves which are 

predominantly anisotropy-destroying only. 

However, the 

If w e  discuss the M -type shock 
f f S 

In addi t ion t o  the shock waves j u s t  described the re  can be other  Mf-type Ll5l 
shock waves, a l l  of which a r e  expansive so t h a t  7 < 0. 

anisotropy these start a t  h = 0 and = ?=-" -*s- <+!*" . 7 decreases 

In  the case of pos i t i ve  - 
P 5 ?- - + A S  



monotonely after reaching some maximum. These shock waves do not e x i s t  

under the conditions of t he  examples i n  Figures 10 through 23 where As > 0. 

They can e x i s t  i n  t he  presence of smaller pos i t i ve  anisotropy, as w e  can see 

from the  curve segments where P,,/P, = 1.0 which start out from h = 0, q = 0. 

Similar  shock wave types can a l s o  e x i s t  i n  the presence of negative anisotropy, 

as i n  Figures 10 through 13. However, these begin a t  a point where 

h = -3/5 As s i n  8,. 

- 

A 

Examination of t he  magnitude -[HI shows t h a t  a t  least p a r t i a l  segments of 

a l l  shock wave curves under consideration e x i s t  under the s p e c i f i c  s t i p u l a t i o n s  

made f o r  -[HI. Consequently, a l l  the compressive M -type shock waves with 

negative anisotropy shown i n  the examples i n  Figures 10 through 23 can ex i s t .  

When the re  is pos i t i ve  anisotropy with P,,/P+ = 11.0, the  compressive shock waves 

with = 1.0, 8 '= 45" can e x i s t  where > +0.27. A l l  M type shock waves 

A 

f 

- 
0 0 f -  

= 20" and ?,/PI = 1000, although - are permissible i n  the  case where = 0.5, 0, 
T l  is sometimes located very close t o  -1. This is due t o  the extreme se l ec t ion  of 

P// 1P.L - 
3.3.3. -Ms-Type Shock Waves 

W e  now tu rn  t o  the M -type shock waves. These represent the shock wave 
S 

solut ions where h < 0. In addi t ion we s h a l l  a l s o  consider t he  shock wave 

where h = 0 ,  7 = 0 as being an M -type shock wave. 
- 

S 

The index s denotes ttslow" and describes the c h a r a c t e r i s t i c  of M -type 

shock waves t h a t ,  i n  the case where 7 2- -3/5 As, the  shock waves are always 

n , l  'n,1. slow i n  the  sense of V b and V 

pressive and expansive shock waves with 7 2 -3/5 As is used f o r  c l a s s i f i c a t i o n  

instead of the region where 7 e 3/5 L\s because it is preferred by the generalized 

entropy condition, as we can see from Figures 16 and 23. Another c h a r a c t e r i s t i c  

t h a t  j u s t i f i e s  the designation slow is the l imi t a t ion  of the ve loc i ty  jump [u 1. 
This c h a r a c t e r i s t i c  can be seen from Figures 14 and 21 f o r  the examples where 

s 

- 
- 

Again, the region of com- Llsi? n,O n,O 

- 

n 

- - - 1.0, Bo = 45" and go = 0.5, go = 20". 
0 -  - -  A 

In the case of the  M -type shock waves, 47, Y ,  [uy], -[HI are l imited,  too. 
S 

The maximum r e l a t i v e  densi ty  jump is smaller than three.  

H 5 H appl ies  because the M -type shock waves a re  defined by h < 0 

with the one exception where h = 0. The d e f i n i t i o n  of h according t o  the set 
Y , l  Y , O  S 
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of defining Eqs. ( 3 2 )  means t h a t  I Ell 
Again, the magnetic f i e l d  increases when h < -2 s i n  8 Using s imi l a r  reasoning 

as used i n  the case of the M -type shock waves, we conclude from these circum- 

s tances  t h a t  the ve loc i ty  component u of compressive M -type shock waves with 

-2 s i n  8 Conversely, expansive M - 
type shock waves with h < -2 s i n  9 must be accelerated by a negative Y. I n  t he  

case where -2 s i n  9 h g 0, the  pressure change P - P = 0 occurs i n  the 
0 1 0  

expansive region, and f o r  h < -2 s i n  8 i n  the compressive region. Moreover, 
0 

where fl = 0 i n  the case of h = -2 s i n  Bo, it appl ies  t h a t  Y = 0. 

branch passes through t h i s  point when 8, = 45". 
where h = - s i n  9 corresponds t o  a switch-off shock wave which, consequently, 

is always an M -type shock wave. 

KOI i n  the region -2 s i n  Bo s h s 0. 

0' 

f 

n S 

h 5 0 m u s t  be retarded by a pos i t i ve  ?. 
S - 0 

0 

- 
One curve 

F ina l ly ,  we note t h a t  t he  case 

0 

What are the distinguishing f ea tu res  of the individual shock wave types,  

( 2 ) ,  and M s ( 3 ) ?  F i r s t ,  w e  must r e i t e r a t e  t h a t  these three types a r e  L153 Ms ' Ms 
mutually exclusive. In the event t h a t  a s i t u a t i o n  ex i s t ing  i n  f r o n t  of the shock 

wave and described by zo ,  As, 8 f o r  M - 
0 c r i t  s 

type shock waves, a shock wave without densi ty  change cannot e x i s t  except f o r  

h = 0. 

(3 1 s a t i s f i e s  the condition As < (As) 

Consequently, the shock wave so lu t ions  M (3) do not permit any reduction 
S 

of H without a densi ty  change o r  a change of [u 3 .  
with the M -type shock waves i n  an i so t rop ic  plasma 

is a solutTon. The M (3)-states a r e  located i n  the 

the v e r t i c a l  l i n e  which passes through the terminal 

Y n 

S 

This is i n  contradict ion 

where h = -2 s i n  8 = 0 

As, so-plane t o  the l e f t  of 

point of the dot-dashed 

- 
0' - - 

curve i n  Figure 6 which is designated by the e -value i n  question. For instance,  

i n  the case of Bo = 20' and As < -0.2, we a r e  dealing with Ms(3)-type shock 

waves. The terminal points  of the dot-dashed curves a r e  connected by a s o l i d  

l i n e  which coincides,  within the scope of drawing accuracy, with the  continua- 

t i o n  of the dotted l i n e  designated 0' i n  t h e  d i r ec t ion  of negative As. Since 

42', Ms(3)-type shock waves can e x i s t  only (As cr i t 
f o r  8 < 42'. Examples of M -type shock waves are the solut ions with h < 0 

and h = 0, = 0 f o r  = 0.5, 8, = 20" and $,/PI = 0.667 t h a t  are represented 

i n  Figures 17 through 23. W e  can see two curve segments there. A c h a r a c t e r i s t i -  

c a l  f ea tu re  is the closed curve. I f  we permit t o  grow from 0.5 on, main- 

ta ining 0, and As constant ,  the  closed curve w i l l  shr ink and w i l l  f i n a l l y  disappear. 

0 

= -5/6 appl ies  where 8 
(3? 

s - 0 

0 

0 



If we continue t o  increase a new closed curve w i l l  grow from a po in t ,  and 

t h i s  curve w i l l  contain only expansive shock waves. This curve w i l l  grow i n  

circumference u n t i l  growing curve segments are cu t  off by the 7 = -1 l i n e  and 

Y = -1 l ine.  The boundary l i n e s  i n  the  As, S -plane which i n  the case of a 

c e r t a i n  eo correspond t o  t h e  s i t u a t i o n s  where the closed curve degenerate i n t o  

a po in t ,  are obtained from the  equations 

0’ 

- 
- - 

0 

2 
h R = O  

and 

d - (h2 R )  = 0 
dh 

These boundary l i n e s  are curves opening t o  the l e f t  which reach t h e i r  maxi- 

mum As = (As) a t  the  terminal points  of t he  dot-dashed curves i n  Figure 6. 

Consequently, these terminal points  on the s o l i d  l i n e  i n  Figure 6 correspond t o  

the boundary cases of closed curves i n  the  h ,  v-plane which a r e  points  on the  

h-axis t h a t  have j u s t  stopped being M (3)-type shock waves. 

diagrams with the o the r  s t e p  functions include corresponding i so l a t ed  po in t s ,  

too. In the case where 8 

s t a t e d  simply as follows: 

c r i t  

- 

O f  course,  the 
s 

- - 
= 0, the boundary l i n e  i n  the A s ,  so-plane can be 

0 

The dotted boundary curves f o r  Alfven shock waves i n  Figure 9 are useful 

f o r  t he  determination of the topology of the M -type shock waves and especial ly  

of the Ms(3)-type shock waves. By way of example, we s h a l l  consider a shock 

wave with Bo = 20’ whose As and E -values a r e  located on the in t e r sec t ion  between 
0 

the  Alfvgn shock wave boundary curve and the s t r a i g h t  l i n e  As = (4s) c r i t  ’ 
is a t  = 0.76 and As = -0.19. In t h i s  case a closed curve e x i s t s  which 

i s t a n g e n t t o  the h-axis T l  = 0 and the s t r a i g h t  l i n e  7 = -3/5 As = f 0.115. 

s 

which 

0 - - 

maintaining A s  e 0 , T ’  If w e  permit s= t o  become smaller than 
0 

which means t h a t  w e  drop below the  dotted curve i n  Figure 9 t h a t  is 

associated with t h e  angle 8, i n  question, it can happen t h a t  the closed curve 

opens t o  the r i g h t  and reaches t h e  n-axis a t  h = 0,  = 0 and h = 0,  17 = noz. 
L155 - - - -  

(3 1 A l l  M -type shock waves with negative anisotropy, and e spec ia l ly  the M - 
type shock waves, are associated with a shock wave branch which begins a t  h = 0, 

s s 
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- 2 - -  
7 = 

through a minimum i n  h ,  and reaches h = 0, 7 = 0. 

t h i s  branch is located i n  the h ,  7-plane t o  the r i g h t  of the tangent a t  h = 0, 

‘l‘l = 0. Upon passage t o  the  l i m i t  h + 0 ,  11 + 0, w e  obtain the compressive counter- 

p a r t  t o  the expansive shock waves described i n  conjunction with the  M type 

shock waves under pos i t i ve  anisotropy, which reach an i n f i n i t e  ve loc i ty  where 

h + 0, 11 + 0. In both instances,  the 

s i g n i f i c a n t  effect of such a shock wave i n  t h e  v i c i n i t y  of h = 0 is the iso- 

t rop iza t ion  of the plasma and a pressure change of 

> 0 ,  Y = -As/s cos Bo, e tc . ,  on the edge of t he  Mf region, passes 
d 

02 

0 ’ ‘0,T’ In the case where s= - 
- - 

f -  

The s a m e  formulas apply i n  both cases. 

= - 215 dS/So  ‘ O s *  ‘ 0  

In the case of excessively s m a l l  values of 1 As1 near h = 0, T l  = 0, the formulas 

used here w i l l  lose  t h e i r  v a l i d i t y  again as isotropy is establ ished i n  the r e a r  

of the shock wave. 

W e  now tu rn  t o  the  M and M (2)-type shock waves which transform i n t o  

the corresponding types of Bazer and Ericson C19.581 when 4s -b 0. In the case 

of a t r i p l e t  of values 4s,  5 
type shock wave, t he re  a r e  always two shock wave solut ions which make H 

smaller than H > 0 without densi ty  change. This is the s i g n i f i c a n t  difference 

between these and the  M (3)-type shock wave. 

and s= 2 So,T, the shock wave so lu t ions  are not subject  t o  densi ty  change and 

are located on a curve which would always be closed i f  we incorporate the curve 

segments where Y < -1 and q <  -1. This curve contains a shock wave so lu t ion  

t h a t  corresponds t o  a maximum Ihl When t h i s  shock wave 

is compressive, w e  c a l l  it an M (2)-type shock wave along with a l l  other  M - 
type shock waves associated with the same t r i p l e t  of values As, go, €Io. 

t h i s  shock wave is expansive, the shock waves a r e  ca l l ed  MS(l)-type shock waves. 

The boundary between the two types is represented by dot-dashed curves f o r  

S 

(2 - eo,  which corresponds t o  an MS(l)-type or  M - 
0’ 

Y , l  

Y 70 
In the case of negative anisotropy s - 

0 

- - 

o r  minimum h = h min’ 

s - s 
I f  L156 

each e i n  Figure 6. 

s = 1. Moreover, Ms(2)-type shock waves cannot e x i s t  above 50.8“ = a r c  s i n  1/3/5. 

It is seen t h a t  MS(’)-type shock waves cannot e x i s t  above - 0 - - 
0 I .  \ 

Figures 10 through 16 contain the s t e p  functions of M “’-type shock waves with 

so = 1.0, Bo = 45” as w e l l  as  Plf/P& = 0.6, 1.0 and 11.0. Figures 17 through 23 

contain two M (2)-type shock waves with E = 0.5, eo = 20°, F’,(/P.L = 1000.0 
s 0 

and 1.0. It was already mentioned a t  the end of t h e  descr ipt ion of the M - 

s - - 

(3 1 
s - 

type shock waves t h a t ,  i n  the presence of negative anisotropy and s= 2 - 0 0 , T  
the re  is always one shock wave branch which is located i n  the  h ,  7-plane t o  the 



r i g h t  of t he  tangent placed through the zero po in t ,  reaches only s m a l l  values 

of h ,  and contains a shock wave of i n f i n i t e  ve loc i ty  when h = 0, 7 = 0. This 

branch can merge i n t o  the closed curve when E In  the case of pos i t i ve  

anisotropy, and i f  w e  w e r e  t o  disregard the inequa l i t i e sT)  2 -1 and Y 2 -1, but 

took i n t o  consideration t h a t  (h - 7 s i n  8 )/h 2 0, we would obtain a shock wave 

curve which starts at  h = - 3 / 5  -d  s sin 8, and 

i n t e r s e c t s  the h-axis, passes through 

and terminates a t  t he  T-axis. Pa r t  of t h i s  curve is cut off  as a r e s u l t  of the 

conditions ? 2 -1, T) 2 -1, which can be seen from Figures 10 and 17. 

- 
< E 

0 0,T. - - 
- - 

0 
= ( a s / l O ~ , )  (6 - 3 A s  sin2Qo - 2 cos2 8,) 

h a - 31.5 A S  sin 8 0 9  = - 3 / 5  * s  , - 
- 

Examination of the -[GI curves i n  Figure 16 w i l l  show t h a t  t he  M ( l ) - type 
S - 

shock wave with 8, = 45”, so = 1.0 and P,,/P, = 11.0 is st i l l  permissible even 

far  i n t o  the expansive region. 

negative anisotropy P,,/Pl = 0.6 is constrained i n  comparison t o  the  i so t rop ic  

case. Almost a l l  anisotropic  shock wave solut ions are permissible i n  the  case 

where 

The region of the M (‘)-type shock wave with 
S 

= 0.5, 8, = 20° Fj,/PL = 1000. 
0 - 

Eq. 39 i n  addi t ion t o  Figures 15 and 22 show t h a t  s i g n  [u 1 = s ign  h 
Y 

applies.  

d i r ec t ion  which the plasma undergoes upon passing through the shock wave region. 

The forces act ing i n  t h e  y-direction are the y-component of t h e  current  force 

Consequently, h determines the s ign  of t he  impulse change i n  the y- 

x E and the  y-component of -v P. - - 
3.3.4. Shock Waves with VeTLsr22t and Very 

Small Values of 5 
- -__ 
0 

We s h a l l  now discuss b r i e f l y  the shock waves with g rea t ly  predominant 

thermal energy ( 5  % 1) and g rea t ly  predominant magnetic f i e l d  energy (E < 1). 
0 0 

In the  case where % 1, the i n s t a b i l i t y  l i m i t s  have the r e s u l t  t h a t  
0 

P,,/PI is located within an in t e rva l  about 1 which progressively narrow down 

Apart from f i n e  d e t a i l s  the dynamic behavior w i l l  be determined only by the 

p a r t i c l e  pressure components and ve loc i t i e s .  Consequently, w e  can expect t h a t  

the dependence of ?(and of the v e l o c i t i e s  V of 7 t h a t  are r e fe r r ed  

t o  the  sonic  ve loc i ty  a. = (5 pb/p,)” on S w i l l  decrease progressively as  

s -+ m. (Here we must usual ly  consider the sonic ve loc i ty  a a s  being a 

numerical magnitude which describes the thermic v e l o c i t i e s ) .  

a l a r g e  value of 2 
sponding functions f o r  shock waves i n  g a s  dynamics where y = 5/3. 

and V 
n 92 n , l  

0 - - 
0 0 

In the case of 

these functions w i l l  d i f f e r  only l i t t l e  from the corre- 
0’ 
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- -  
W e  s h a l l  note down these functions Y(T)) ,  Vn o/ao, V /a f o r  shock waves i n  g a s  ' n , l  1 
dynamics using 3, /PA = 1- 

2 
a; = 

The behavior of a r e s idua l  

by the  p a r t i c l e s  without having 

motion. 

magnetic f i e l d  w i l l  then be dominated primarily 

any appreciable react ion on p a r t i c l e  

Of course,  as  f a r  as any measurements are concerned, the magnetic f i e l d  is 

st i l l  an important i nd ica to r  f o r  the behavior of matter. Therefore, w e  s h a l l  

consider b r i e f l y  the behavior of t he  shock wave functions i n  t h e i r  dependence 

on h under l a r g e  values of E 
Ms (3)-types of shock waves. 

i n  the h,  i-plane a r e  located i n  the v i c i n i t y  of 

One shock wave curve starts out from h = 3 s i n  8 7 = 3 ,  proceeds along the 

s t r a i g h t  l i n e  7 = h/sin e,, and reaches a sharp minimum i n  h near negative 

h(As 0 )  o r  pos i t i ve  h(As > 0 )  depending on the s ign  As. 

(1) (1) and In t h a t  case w e  have only M 
0' f y M s  

In t he  case where I b 1s 3 ,  the shock wave curves 
- 

= h/sin 8 and 9 = 0. 
0 - 

- 0' 

In the case of negative anisotropy, the curve proceeds from h = 0, 

= 0, with a small value of 17 1 e 1 and a shallow decline toward pos i t i ve  

values of h. Moreover, another curve of s l i g h t l y  expansive shock waves pro- 

ceeds with a weakly r i s i n g  s lope from the d i r ec t ion  of negative h-values t o  a 

point where h = hO2, 9 = 0, passes through a weak maximum, tu rns  negative again 

with a shallow negative slope a t  point h = h performs a downvard bend, and 

proceeds approximately along the s t r a i g h t  l i n e  9 = h/sin 8,. 

case. 

expansion. 

- 

- 

03'- 
This w a s  the  M L159 S 

In the M (3) case,  the maximum is st i l l  reached under very s l i g h t  
S 

In  the case of pos i t i ve  anisotropy, there  is a l s o  a curve which proceeds 

from negative n-values a t  a s l i g h t  rise and s l i g h t l y  negative 7 ,  becomes pos i t i ve  
- 

I 1 



- 
a t  h = hoz, reaches a w e a k  maximum, passes h = 0, 7 = 0 and a maximum i n  h ,  and 

tu rns  downward again alongside 7 = h/sin €I 
- 

0' 

It is important i n  the case of 5 %- 1 t h a t  f a i r l y  s t rong compressive shock - 0 
waves a re  located near 7) = h/sin 0 

waves w i l l  reach very weakly pos i t i ve  ?-values so t h a t  they w i l l  never be slow 

i n  the sense of V < b i n  the presence of negative,  f a i r l y  strong aniso- 

tropy. Large  values of / h / c a n  be achieved only under very u n r e a l i s t i c  s t i pu -  

l a t i o n s  with respect  t o  t h e  H-theorem i n  the  inequa l i ty  (33s). 

where h 2  0. A t  best  t he  M -type shock 0 -  S 

n , l  n , l  

The case where s= % 1 is in t e re s t ing  f o r  s t i l l  another reason. W e  had shown 

with the a i d  of Eq. (46) t h a t ,  within the l i m i t s  imposed by f i r e  hose i n s t a b i l i t y  

and r e f l e c t i o n  i n s t a b i l i t y ,  11 = +3 can be reached only where h = 3 s i n  0 This 

w a s  one of t he  aux i l i a ry  theorems f o r  the proof t h a t  7 = +3 can be the m a x i m u m  

0 densi ty  change. If w e  l i m i t  the  s t a b i l i t y  requirement and i f  the values of E 
a r e  large,  densi ty  changes with 9 > 3 are possible  as w e l l .  For instance,  i n  

the  case where 0 = 90" and As > 0, t h i s  w i l l  be possible  when s= > 44. The 

absolute minimum of As is 110, while the l i m i t  of f i r e  hose i n s t a b i l i t y  is 

located near 5/3. In  any event,  the i n s t a b i l i t y  w i l l  be very great.  However, 

it is st i l l  possible t h a t  the c h a r a c t e r i s t i c  

associated with the  f i r e  hose i n s t a b i l i t y  w i l l  s a t i s f y  the  condition L /L 

where we made use of the fact t h a t  the f i r e  hose i n s t a b i l i t y  is s t a b i l i z e d  below 

the ion gyro frequency f 

and t h a t  the growth constant of i n s t a b i l i t y  is < f The lower boundary of 

depends only on I 
Heppner e t  a l .  [1967] and Wolfe e t  al. [19681, Ls % 1000 VA/ wci, and extra-  

polat ing the v a l i d i t y  range toward l a r g e  values of s= 

0 

- 
0' 

0 0 

length 5 2 V which is 
n , df c i 

< 1, S F  

as a r e s u l t  of the e f f e c t  of t he  f i n i t e  gyro radius ,  L160 c i  

4 ci '  
I . Using the value acquired from the measurements of 

we w i l l  f i n d  0' 
Ls/'p 5 looo(vA Uci)'(Oci, v,,o) = ~ooo~v~/v,,, 9 When the  Alfven Mach 

number is very great ,  Ls/$ can become very s m a l l  compared t o  one. 

case the plasma w i l l  be quasis table  f o r  the purpose of the theory implemented 

here ,  unless o the r  types of i n s t a b i l i t i e s  become e f f ec t ive .  It is admitted 

t h a t  the expressions $ and L 

eve r ,  they a r e  used merely as  i l l u s t r a t i o n s  f o r  the physical concept t h a t  the 

i n s t a b i l i t y  l i m i t s  are not absolute boundaries. 

In  t h a t  

c i t e d  above are very rough approximations. How- S 
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A t  the  end of t h i s  s ec t ion  w e  s h a l l  discuss b r i e f l y  the  case where < 1. 0 
Since t h i s  w i l l  a l s o  imply As < 1, w e  can see immediately from Eq. (34) t h a t  

s and As can be disregarded, except f o r  a s m a l l  region about h = 0. This w i l l  

a l s o  apply t o  Eqs.(36) through (39),  i f  w e  merely keep i n  mind t h a t  

- - 
0 

- 5 . 7  = 
513 

The disappearance of s= and 4s  from Eqs. 

s ince only the magnetic f i e l d  H and the  0 
the s t e p  functions i f  Eo < 1. The shock 

0 
(34) through (39) is not surpr is ing 

densi ty  po have a decisive e f f e c t  on 

wave so lu t ions  i n  the v i c i n i t y  of h = 0 

can be acquired e a s i l y  from the discussions i n  Paras. 3.3.2. and 3.3.3. In 

p a r t i c u l a r ,  it appl ies  again t h a t  the shock waves with i n f i n i t e  ve loc i t i e s  but 

f i n i t e  7 and [u 3 = 0 as well as  [u 1 = 0 are possible  where h = 0, 7 = 0. 
- 

Y n 

Consequently, the s t e p  functions f o r  < 1 a r e  independent of A s ,  except L161 
0 

i n  close proximity t o  h = 0. Y e t  the anisotropy can have a strong e f f e c t  i n  

t h a t ,  based on the c l a s s i c a l  entropy condition and v i a  the H-theorem according 

t o  inequation ( 3 3 g ) ,  forbidden shock waves can be permissible and vice versa. 

The discussion i n  t h i s  s ec t ion  has shown t h a t  the e f f e c t  of anisotropy is 

generally small f o r  both,  large and small values of E 
anisotropy is g rea t e s t  i n  t h e  v i c i n i t y  of = 1 i n  the As, -plane. 

In  fact ,  the e f f e c t  of 
- 0' 

0 0 

We have already seen the great e f f e c t  of anisotropy on the shock wave 

functions i n  many instances i n  Chapter 3. A discussion of the behavior of these 

functions under constant 8, and 

in t e re s t .  However, w e  would again have t o  make a d i s t i n c t i o n  between a large 

number of cases i n  order t o  make the discussion complete. Therefore, w e  s h a l l  

be content with some spec ia l  cases. 

and var iable  As would be of addi t ional  
0 

F i r s t ,  w e  consider - ah under constant i: aA s 
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Moreover, the following r e l a t ionsh ip  is obtained with Eq. ( 3 4 )  : 

is s a t i s f i e d .  

are located near 

Eq. (62) describes a hyperbola i n  the h ,  f-plane whose ve r t i ce s  

This hyperbola is very important. For, i f  we have found a curve point f o r  a 

c e r t a i n  t r i p l e t  of values 8 5 As which s a t i s f i e s  Eqs. ( 3 4 )  and (62) equally 

wel l ,  t h i s  curve point w i l l  s a t i s f y  E q .  ( 3 4 )  under any value of As with con- 

s t a n t  8, and s= This is seen most e a s i l y  from Eq. (34). Figures 10 and 17 
contain several  such points.  F i r s t ,  the  already known point h = 0 ,  ?l = 0 and 

the point h = 3 s i n  8 'fl = 3 which corresponds t o  the case of the i n f i n i t e l y  

strong shock wave, a r e  so lu t ions  of Eq. (341, independently of A s  and Xn 

Figure 10 another point which is independent of anisotropy is located near 

- 
0' 0' 

0' - 
- 

0' 

0' 

- 
h = -2 s i n  eo,  7l = 0, o r  h = -1.414, 7 = 0. I f  the curves w e r e  not l imited 

by the condition t h a t  Y 2 -1, w e  would have st i l l  another common point near 

h w  0.55, q -0.9. S t i l l  another point which is not dependent on anisotropy 

is located near hs= 0.17 and 11 x -0.36 i n  Figure 17. 

- 
- 

- 

Now, the question arises immediately whether t he re  are a l s o  some compres- L163 - - 
s i v e  M 

not dependent on As. It is e a s i l y  seen from the general p r o f i l e  of y (h )  where 

As = 0 and from the p r o f i l e  of the hyperbola according t o  Eq. (62) t h a t ,  i n  the 

region where h 2 0, 3 > 'fl > 0, a point i n  the h ,  7-plane which is independent 

type shock wave so lu t ions  with 0 < 7 < 3 where, f o r  given v ,  h is f - 

- - 
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of anisotropy could never be possible. This circumstance, and the rise 

a t  h = 3 s i n  8 7 = 3 ,  f i n a l l y  y i e ld  the following important statement. 

Let vl(h)  and 7 (h) be the compressive Mf-type shock waves i n  the  h ,  r)-plane 

t h a t  are associated with the same Bo and but with d i f f e r e n t  values of A s ,  

these being (As)l and (As),. 

two curves do not i n t e r s e c t  i n  the region where h 2 0 and 0 7 < 3 ,  and t h a t  

7, with  AS)^ > ( A s ) ,  is located near h = 3 s i n  8,, 7 = 3 on the way toward 

lower values of T, t o  t he  r i g h t  of r),. Except f o r  negative anisotropy, small 

angles Bo and not excessively great values of go, points with $ = 0 w i l l  not 

occur. In t h a t  case the above statement can be summarized i n t o  the inequal i ty  

- 
- 0' - 

2 

0 -  - 
In t h a t  case,  7, and T2 w i l l  proceed s o  t h a t  t he  - 

- - 
- - 

This c h a r a c t e r i s t i c  can be seen i n  Figures 10 and 17. A s  A s  increases ,  the h 

associated with a constant 17 continues t o  grow. 

The r e l a t ionsh ips  f o r  t he  other  shock wave functions a re  not as  simple as 
- - 

they a re  f o r  q ( h ;  So, As, Elo). 

statement on q (h )  is a l s o  va l id  f o r  Y, V and V , provided t h a t  the shock 

waves a re  s u f f i c i e n t l y  strong. 

4. Conclusion L164 

It is seen from these examples t h a t  the above 
- - 

n,O n , l  

The shock wave relat ionships  f o r  an anisotropic  plasma with magnetic f i e l d  

were derived f o r  the n o n r e l a t i v i s t i c  case i n  Chapters 2 and 3 ,  and discussed i n  

great d e t a i l .  For t h i s  purpose, w e  s t a r t e d  out by deriving the conservation 

equations v i a  several  s tages  from the basic equations by Klimontovich and Dupree. 

Some weak assumptions w e r e  made t h a t  e s t a b l i s h  the a p p l i c a b i l i t y  range of the 

calculat ions within very wide l i m i t s .  

Subsequently, w e  used the theories  on the s t r u c t u r e  of shock waves i n  an 

anisotropic plasma, observations acquired from the e a r t h ' s  shock wave, and other  

physical considerations f o r  an attempt t o  j u s t i f y  the assumption of the existence 

of an i so t rop ic  plasma i n  the rear of the shock wave region. This included 

considerations of a more general nature on the general izat ion of the c l a s s i c a l  



entropy condition. F ina l ly ,  we derived the shock wave r e l a t i o n s  and discussed 

t h e i r  implications under a va r i e ty  of mathematical and physical aspects.  W e  

eaphasize again,  t h a t  it is not possible  t o  m a k e  any quan t i t a t ive  statement 

as t o  the existence of t he  shock wave so lu t ions  which w e r e  discussed. 

Also, i n  the  case of t he  c l a s s i c a l  magnetohydrodynamic shock waves the  

invest igat ions of s t r i c t u r e  and s t a b i l i t y  sometimes took place considerably 

later than the invest igat ions of t he  shock wave r e l a t ions .  

W e  s h a l l  now enumerate the most important r e s u l t s .  W e  s h a l l  s t a r t  with the 

commonalities ex i s t ing  between the c l a s s i c a l  hydromagnetic shock waves and the 

solut ions discussed here. 

1. The densi ty  cannot increase by more than a f a c t o r  of four  during a shock wave 

t r a n s i t i o n  (cf .  Para. 3.3.4.1. 

2. The magnetic f i e l d  can change only by a f i n i t e  quant i ty  during a shock wave L165 
t rans  it ion. 

U L  Except f o r  t he  spec ia l  case of the Alfvgn shock waves where ( 9 , -   PO)/^. =(PL-P,,)/s 
and [u ] f 0 ,  the t ransverse port ions of the magnetic f i e l d  i n  f r o n t  of the 

shock wave and i n  its rear a re  c o l l i n e a r ,  meaning t h a t  t he  plane formed 

of the magnetic f i e l d  vectors i n  f r o n t  of the shock wave region and i n  its 

r e a r  is or iented perpendicularly t o  the  shock f ron t .  The normal 

component of the magnetic f i e l d  does not change. 

3 .  

Y 

Apart from the f a c t  t h a t  the jump functions are sometimes changed con- 

s iderably as a r e s u l t  of anisotropy, we  can next enumerate some espec ia l ly  

important points.  

4. The e f f e c t  of anisotropy is s t rongest  i n  t h e  case of a plasma s t a t e  i n  

f ron t  of the shock wave where the magnetic energy density and the thermal 

energy densi ty  of the  plasma have approximately the same order of magnitude. 

5. When there  is negative anisotropy of adequate s t r eng th ,  t h a t  is, where 

AS < accompanied by a low energy densi ty  of the magnetic f i e l d  

as compared t o  the thermal energy densi ty  of t he  plasma, t he re  w i l l  be no 

compressive shock waves whose magnetic f i e l d  decreases by a major amount 

(meaning t h a t  h > -1/4 appl ies  where fi > 0).  
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6. The generalized entropy condi t ion may a l so  allow expansive shock waves, 

and t h i s  not only when t h e  co l l i s ion le s s  plasma i n  f ron t  of t he  shock wave 

is anisotropic .  

A shock wave type is poss ib le  i n  the  presence of anisotropy whose ve loc i ty  

can grow beyond a l l  bounds, while t h e  densi ty  jump, magnetic f i e l d  jump, 

and pressure jump tend toward zero. This shock wave type is expansive 

under pos i t i ve  anisotropy and compressive under negative anisotropy ( t h i s  

type corresponds t o  a s m a l l  neighborhood of h = 0,  

is pr imari ly  one of anisotropy destruct ion.  

7 .  1166 

- 
= 0 ) .  Its e f f e c t  

8. In the  case of compressive shock waves associated with an increase of t h e  

magnetic f i e l d  t ransverse component (meaning t h a t  H > H o r  t h a t  

h > O ) ,  t h i s  increase cannot drop below a ce r t a in  value i f  t he  anisotropy 

is pos i t ive .  In t h e  case of negative anisotropy, compressive shock waves 

with increasing t ransverse component of the  magnetic f i e l d  cannot e x i s t  

below a minimum pressure jump which d i f f e r s  from zero. 

A t  t he  present  t i m e ,  it i s  d i f f i c u l t  t o  e f f e c t  a comparison of t he  calcula- 

Y , l  Y , O  

t i ons  with experimental r e su l t s .  'This would requi re  simultaneously acquired 

magnetic f i e l d  and plasma measurements t h a t  cover a l l  the  important p a r t i c l e  

types and have such a high reso lu t ion  t h a t  t h e  anisotropy can be determined. 

The following Table 6 lists a l l  t he  authors who have reported on plasma and 

magnetic f i e l d  measurements acquired from the  same shock wave t r a n s i t i o n  i n  

s o l a r  wind. 

I 



TABLE 6. 

Authors and year 
of publicat ion 

Type of shock wave Measured magnitudes 

Sonet t ,  e t  al., 
C 19641 

Van Allen and N e s s ,  
C 1967 1 

Sugiura e t  al.,  
C 19681 

(Original measure- 
ments by Lazarus 
and Binsack, 

C19681 

N e s s  e t  al.,  

Wolfe e t  a l . ,  
C19661 

C 1968 1 

Interplanetary shock wave Magnetic f i e l d ,  ion energy 
spec t r a  without d i r ec t iona l  
resolution. 

Magnetic f i e l d  L167 

Interplanetary shock wave Numerical ion densi ty  
and m a s s  v e l o c i t i e s  are 
c i t e d  i n  t h e  paper by 
Sugiura, e t  al. 

Ea r th ' s  shock wave 

Magnetic f i e l d  

Ion and e l ec t ron  measure- 
ments with approximate 
c i t a t i o n  of the anisotropy 
f o r  the ions. 

Moreover, t he re  is a l a r g e  number of observation data  where, unfortunately,  

t he  magnetic f i e l d  measurements and plasma measurements on both s ides  of the 

e a r t h ' s  shock wave w e r e  not acquired simultaneously. F ina l ly ,  the paper by 

Gosling e t  al. [1968], contains plasma observations of interplanetary shock 

waves. 

ing the shock wave r e l a t ions .  In the first c i t e d  instance,  the measurements lack 

the d i r ec t iona l  resolut ion and the measurements of the e l ec t ron  d i s t r i b u t i o n  which 

should play a s i g n i f i c a n t  r o l e ,  according t o  the observations by Montgomery 

[1958]. In the second instance,  the complete measurements acquired by Lazarus 

and Binsack w e r e  not avai lable  when t h i s  t h e s i s  w a s  being completed. The t h i r d  

c i t e d  case is the most advantageous under the circumstances. However, the 

condition t h a t  L /L < 1 is not s a t i s f i e d  f o r  the e a r t h ' s  shock wave. Moreover, 

However, even the measurements c i t e d  i n  Table 6 cannot be used f o r  test- 

S 
the  e r r o r  l i m i t s  a r e  very g rea t ,  especial ly  f o r  t he  temperature measurements 

behind the shock wave, but a l s o  f o r  the der ivat ion of the ion pressure aniso- 

tropy i n  f r o n t  of the e a r t h ' s  shock wave. In addi t ion,  t he re  is a lack of 

information on t h e  e l ec t ron  pressure anisotropy which is due t o  the great  

d i f f i c u l t i e s  involved i n  measuring e l ec t ron  spec t r a  i n  s o l a r  wind. I t  is t r u e  

t h a t  we can make s u i t a b l e  s t i p u l a t i o n s  on the e l ec t ron  pressure anisotropy i n  

order t o  e f f e c t  a comparison between theory and experiment which w i l l  y i e ld  

L168 
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b e t t e r  r e s u l t s  than the classical theory on MHD shock waves .  However, t h i s  is 

more due t o  the fact t h a t  w e  have an addi t ional  parameter avaiIable  in the  

form of As which can be var ied within the measuring l imi t s  i n  order  to  adapt 

the  theory t o  t h e  experiment. 

with t h i s  comparison s h a l l  not be ci ted.  

Theref'ore, the numerical computations associated 

We conclude t h i s  discussion with the statement t h a t  w e  must wait f o r  more 

exact plasma and magnetic f i e l d  measurements before w e  can inves t iga te  the  

agreement between theory and experiment. 
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